Metamath Proof Explorer


Theorem lflsc0N

Description: The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lflsc0.v V=BaseW
lflsc0.d D=ScalarW
lflsc0.k K=BaseD
lflsc0.t ·˙=D
lflsc0.o 0˙=0D
lflsc0.w φWLMod
lflsc0.x φXK
Assertion lflsc0N φV×0˙·˙fV×X=V×0˙

Proof

Step Hyp Ref Expression
1 lflsc0.v V=BaseW
2 lflsc0.d D=ScalarW
3 lflsc0.k K=BaseD
4 lflsc0.t ·˙=D
5 lflsc0.o 0˙=0D
6 lflsc0.w φWLMod
7 lflsc0.x φXK
8 1 fvexi VV
9 8 a1i φVV
10 2 lmodring WLModDRing
11 6 10 syl φDRing
12 3 5 ring0cl DRing0˙K
13 11 12 syl φ0˙K
14 9 13 7 ofc12 φV×0˙·˙fV×X=V×0˙·˙X
15 3 4 5 ringlz DRingXK0˙·˙X=0˙
16 11 7 15 syl2anc φ0˙·˙X=0˙
17 16 sneqd φ0˙·˙X=0˙
18 17 xpeq2d φV×0˙·˙X=V×0˙
19 14 18 eqtrd φV×0˙·˙fV×X=V×0˙