Metamath Proof Explorer


Theorem lgsneg1

Description: The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgsneg1 A0NA/L- N=A/LN

Proof

Step Hyp Ref Expression
1 neg0 0=0
2 simpr A0NN=0N=0
3 2 negeqd A0NN=0N=0
4 1 3 2 3eqtr4a A0NN=0N=N
5 4 oveq2d A0NN=0A/L- N=A/LN
6 nn0z A0A
7 lgsneg ANN0A/L- N=ifA<011A/LN
8 6 7 syl3an1 A0NN0A/L- N=ifA<011A/LN
9 nn0nlt0 A0¬A<0
10 9 3ad2ant1 A0NN0¬A<0
11 10 iffalsed A0NN0ifA<011=1
12 11 oveq1d A0NN0ifA<011A/LN=1A/LN
13 6 3ad2ant1 A0NN0A
14 simp2 A0NN0N
15 lgscl ANA/LN
16 13 14 15 syl2anc A0NN0A/LN
17 16 zcnd A0NN0A/LN
18 17 mullidd A0NN01A/LN=A/LN
19 8 12 18 3eqtrd A0NN0A/L- N=A/LN
20 19 3expa A0NN0A/L- N=A/LN
21 5 20 pm2.61dane A0NA/L- N=A/LN