Metamath Proof Explorer


Theorem lgssq2

Description: The Legendre symbol at a square is equal to 1 . (Contributed by Mario Carneiro, 5-Feb-2015)

Ref Expression
Assertion lgssq2 ANAgcdN=1A/LN2=1

Proof

Step Hyp Ref Expression
1 simp1 ANAgcdN=1A
2 nnz NN
3 2 3ad2ant2 ANAgcdN=1N
4 nnne0 NN0
5 4 3ad2ant2 ANAgcdN=1N0
6 lgsdi ANNN0N0A/L N N=A/LNA/LN
7 1 3 3 5 5 6 syl32anc ANAgcdN=1A/L N N=A/LNA/LN
8 nncn NN
9 8 3ad2ant2 ANAgcdN=1N
10 9 sqvald ANAgcdN=1N2= N N
11 10 oveq2d ANAgcdN=1A/LN2=A/L N N
12 lgscl ANA/LN
13 1 3 12 syl2anc ANAgcdN=1A/LN
14 13 zred ANAgcdN=1A/LN
15 absresq A/LNA/LN2=A/LN2
16 14 15 syl ANAgcdN=1A/LN2=A/LN2
17 lgsabs1 ANA/LN=1AgcdN=1
18 2 17 sylan2 ANA/LN=1AgcdN=1
19 18 biimp3ar ANAgcdN=1A/LN=1
20 19 oveq1d ANAgcdN=1A/LN2=12
21 sq1 12=1
22 20 21 eqtrdi ANAgcdN=1A/LN2=1
23 13 zcnd ANAgcdN=1A/LN
24 23 sqvald ANAgcdN=1A/LN2=A/LNA/LN
25 16 22 24 3eqtr3d ANAgcdN=11=A/LNA/LN
26 7 11 25 3eqtr4d ANAgcdN=1A/LN2=1