Description: The Legendre symbol is equivalent to a ^ ( ( p - 1 ) / 2 ) , mod p . This theorem is also called "Euler's criterion", see theorem 9.2 in ApostolNT p. 180, or a representation of Euler's criterion using the Legendre symbol, see also lgsqr . (Contributed by Mario Carneiro, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lgsvalmod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi | |
|
2 | 1 | adantl | |
3 | prmz | |
|
4 | 2 3 | syl | |
5 | lgscl | |
|
6 | 4 5 | syldan | |
7 | 6 | zred | |
8 | peano2re | |
|
9 | 7 8 | syl | |
10 | oddprm | |
|
11 | 10 | adantl | |
12 | 11 | nnnn0d | |
13 | zexpcl | |
|
14 | 12 13 | syldan | |
15 | 14 | zred | |
16 | peano2re | |
|
17 | 15 16 | syl | |
18 | neg1rr | |
|
19 | 18 | a1i | |
20 | prmnn | |
|
21 | 2 20 | syl | |
22 | 21 | nnrpd | |
23 | lgsval3 | |
|
24 | 23 | eqcomd | |
25 | 17 22 | modcld | |
26 | 25 | recnd | |
27 | ax-1cn | |
|
28 | 27 | a1i | |
29 | 7 | recnd | |
30 | 26 28 29 | subadd2d | |
31 | 24 30 | mpbid | |
32 | 31 | oveq1d | |
33 | modabs2 | |
|
34 | 17 22 33 | syl2anc | |
35 | 32 34 | eqtrd | |
36 | modadd1 | |
|
37 | 9 17 19 22 35 36 | syl221anc | |
38 | 9 | recnd | |
39 | negsub | |
|
40 | 38 27 39 | sylancl | |
41 | pncan | |
|
42 | 29 27 41 | sylancl | |
43 | 40 42 | eqtrd | |
44 | 43 | oveq1d | |
45 | 17 | recnd | |
46 | negsub | |
|
47 | 45 27 46 | sylancl | |
48 | 15 | recnd | |
49 | pncan | |
|
50 | 48 27 49 | sylancl | |
51 | 47 50 | eqtrd | |
52 | 51 | oveq1d | |
53 | 37 44 52 | 3eqtr3d | |