Metamath Proof Explorer


Theorem lhpjat2

Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 4-Jun-2012)

Ref Expression
Hypotheses lhpjat.l ˙=K
lhpjat.j ˙=joinK
lhpjat.u 1˙=1.K
lhpjat.a A=AtomsK
lhpjat.h H=LHypK
Assertion lhpjat2 KHLWHPA¬P˙WP˙W=1˙

Proof

Step Hyp Ref Expression
1 lhpjat.l ˙=K
2 lhpjat.j ˙=joinK
3 lhpjat.u 1˙=1.K
4 lhpjat.a A=AtomsK
5 lhpjat.h H=LHypK
6 hllat KHLKLat
7 6 ad2antrr KHLWHPA¬P˙WKLat
8 eqid BaseK=BaseK
9 8 4 atbase PAPBaseK
10 9 ad2antrl KHLWHPA¬P˙WPBaseK
11 8 5 lhpbase WHWBaseK
12 11 ad2antlr KHLWHPA¬P˙WWBaseK
13 8 2 latjcom KLatPBaseKWBaseKP˙W=W˙P
14 7 10 12 13 syl3anc KHLWHPA¬P˙WP˙W=W˙P
15 1 2 3 4 5 lhpjat1 KHLWHPA¬P˙WW˙P=1˙
16 14 15 eqtrd KHLWHPA¬P˙WP˙W=1˙