Metamath Proof Explorer


Theorem lhple

Description: Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014)

Ref Expression
Hypotheses lhple.b B=BaseK
lhple.l ˙=K
lhple.j ˙=joinK
lhple.m ˙=meetK
lhple.a A=AtomsK
lhple.h H=LHypK
Assertion lhple KHLWHPA¬P˙WXBX˙WP˙X˙W=X

Proof

Step Hyp Ref Expression
1 lhple.b B=BaseK
2 lhple.l ˙=K
3 lhple.j ˙=joinK
4 lhple.m ˙=meetK
5 lhple.a A=AtomsK
6 lhple.h H=LHypK
7 simp1l KHLWHPA¬P˙WXBX˙WKHL
8 7 hllatd KHLWHPA¬P˙WXBX˙WKLat
9 simp2l KHLWHPA¬P˙WXBX˙WPA
10 1 5 atbase PAPB
11 9 10 syl KHLWHPA¬P˙WXBX˙WPB
12 simp3l KHLWHPA¬P˙WXBX˙WXB
13 1 3 latjcom KLatPBXBP˙X=X˙P
14 8 11 12 13 syl3anc KHLWHPA¬P˙WXBX˙WP˙X=X˙P
15 14 oveq1d KHLWHPA¬P˙WXBX˙WP˙X˙W=X˙P˙W
16 simp1 KHLWHPA¬P˙WXBX˙WKHLWH
17 simp3r KHLWHPA¬P˙WXBX˙WX˙W
18 1 2 3 4 6 lhpmod6i1 KHLWHXBPBX˙WX˙P˙W=X˙P˙W
19 16 12 11 17 18 syl121anc KHLWHPA¬P˙WXBX˙WX˙P˙W=X˙P˙W
20 eqid 0.K=0.K
21 2 4 20 5 6 lhpmat KHLWHPA¬P˙WP˙W=0.K
22 21 3adant3 KHLWHPA¬P˙WXBX˙WP˙W=0.K
23 22 oveq2d KHLWHPA¬P˙WXBX˙WX˙P˙W=X˙0.K
24 hlol KHLKOL
25 7 24 syl KHLWHPA¬P˙WXBX˙WKOL
26 1 3 20 olj01 KOLXBX˙0.K=X
27 25 12 26 syl2anc KHLWHPA¬P˙WXBX˙WX˙0.K=X
28 23 27 eqtrd KHLWHPA¬P˙WXBX˙WX˙P˙W=X
29 15 19 28 3eqtr2d KHLWHPA¬P˙WXBX˙WP˙X˙W=X