Description: If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lhpm0at.b | |
|
lhpm0at.m | |
||
lhpm0at.o | |
||
lhpm0at.a | |
||
lhpm0at.h | |
||
Assertion | lhpm0atN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpm0at.b | |
|
2 | lhpm0at.m | |
|
3 | lhpm0at.o | |
|
4 | lhpm0at.a | |
|
5 | lhpm0at.h | |
|
6 | simpr3 | |
|
7 | simpl | |
|
8 | simpr1 | |
|
9 | simpr2 | |
|
10 | hllat | |
|
11 | 10 | ad2antrr | |
12 | 1 5 | lhpbase | |
13 | 12 | ad2antlr | |
14 | eqid | |
|
15 | 1 14 2 | latleeqm1 | |
16 | 11 8 13 15 | syl3anc | |
17 | 16 | biimpa | |
18 | simplr3 | |
|
19 | 17 18 | eqtr3d | |
20 | 19 | ex | |
21 | 20 | necon3ad | |
22 | 9 21 | mpd | |
23 | eqid | |
|
24 | 1 14 2 23 5 | lhpmcvr | |
25 | 7 8 22 24 | syl12anc | |
26 | 6 25 | eqbrtrrd | |
27 | simpll | |
|
28 | 1 3 23 4 | isat2 | |
29 | 27 8 28 | syl2anc | |
30 | 26 29 | mpbird | |