Metamath Proof Explorer


Theorem lhpm0atN

Description: If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lhpm0at.b B=BaseK
lhpm0at.m ˙=meetK
lhpm0at.o 0˙=0.K
lhpm0at.a A=AtomsK
lhpm0at.h H=LHypK
Assertion lhpm0atN KHLWHXBX0˙X˙W=0˙XA

Proof

Step Hyp Ref Expression
1 lhpm0at.b B=BaseK
2 lhpm0at.m ˙=meetK
3 lhpm0at.o 0˙=0.K
4 lhpm0at.a A=AtomsK
5 lhpm0at.h H=LHypK
6 simpr3 KHLWHXBX0˙X˙W=0˙X˙W=0˙
7 simpl KHLWHXBX0˙X˙W=0˙KHLWH
8 simpr1 KHLWHXBX0˙X˙W=0˙XB
9 simpr2 KHLWHXBX0˙X˙W=0˙X0˙
10 hllat KHLKLat
11 10 ad2antrr KHLWHXBX0˙X˙W=0˙KLat
12 1 5 lhpbase WHWB
13 12 ad2antlr KHLWHXBX0˙X˙W=0˙WB
14 eqid K=K
15 1 14 2 latleeqm1 KLatXBWBXKWX˙W=X
16 11 8 13 15 syl3anc KHLWHXBX0˙X˙W=0˙XKWX˙W=X
17 16 biimpa KHLWHXBX0˙X˙W=0˙XKWX˙W=X
18 simplr3 KHLWHXBX0˙X˙W=0˙XKWX˙W=0˙
19 17 18 eqtr3d KHLWHXBX0˙X˙W=0˙XKWX=0˙
20 19 ex KHLWHXBX0˙X˙W=0˙XKWX=0˙
21 20 necon3ad KHLWHXBX0˙X˙W=0˙X0˙¬XKW
22 9 21 mpd KHLWHXBX0˙X˙W=0˙¬XKW
23 eqid K=K
24 1 14 2 23 5 lhpmcvr KHLWHXB¬XKWX˙WKX
25 7 8 22 24 syl12anc KHLWHXBX0˙X˙W=0˙X˙WKX
26 6 25 eqbrtrrd KHLWHXBX0˙X˙W=0˙0˙KX
27 simpll KHLWHXBX0˙X˙W=0˙KHL
28 1 3 23 4 isat2 KHLXBXA0˙KX
29 27 8 28 syl2anc KHLWHXBX0˙X˙W=0˙XA0˙KX
30 26 29 mpbird KHLWHXBX0˙X˙W=0˙XA