Metamath Proof Explorer


Theorem lhpmcvr6N

Description: Specialization of lhpmcvr2 . (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lhpmcvr2.b B=BaseK
lhpmcvr2.l ˙=K
lhpmcvr2.j ˙=joinK
lhpmcvr2.m ˙=meetK
lhpmcvr2.a A=AtomsK
lhpmcvr2.h H=LHypK
Assertion lhpmcvr6N KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b B=BaseK
2 lhpmcvr2.l ˙=K
3 lhpmcvr2.j ˙=joinK
4 lhpmcvr2.m ˙=meetK
5 lhpmcvr2.a A=AtomsK
6 lhpmcvr2.h H=LHypK
7 1 2 3 4 5 6 lhpmcvr5N KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=X
8 simp31 KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=X¬p˙W
9 simp32 KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=X¬p˙Y
10 simp11l KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=XKHL
11 10 hllatd KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=XKLat
12 1 5 atbase pApB
13 12 3ad2ant2 KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=XpB
14 simp12l KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=XXB
15 simp11r KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=XWH
16 1 6 lhpbase WHWB
17 15 16 syl KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=XWB
18 1 4 latmcl KLatXBWBX˙WB
19 11 14 17 18 syl3anc KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=XX˙WB
20 1 2 3 latlej1 KLatpBX˙WBp˙p˙X˙W
21 11 13 19 20 syl3anc KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=Xp˙p˙X˙W
22 simp33 KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=Xp˙X˙W=X
23 21 22 breqtrd KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=Xp˙X
24 8 9 23 3jca KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=X¬p˙W¬p˙Yp˙X
25 24 3expia KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=X¬p˙W¬p˙Yp˙X
26 25 reximdva KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=XpA¬p˙W¬p˙Yp˙X
27 7 26 mpd KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X