Metamath Proof Explorer


Theorem limccog

Description: Limit of the composition of two functions. If the limit of F at A is B and the limit of G at B is C , then the limit of G o. F at A is C . With respect to limcco and limccnp , here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limccog.1 φ ran F dom G B
limccog.2 φ B F lim A
limccog.3 φ C G lim B
Assertion limccog φ C G F lim A

Proof

Step Hyp Ref Expression
1 limccog.1 φ ran F dom G B
2 limccog.2 φ B F lim A
3 limccog.3 φ C G lim B
4 limccl G lim B
5 4 3 sseldi φ C
6 limcrcl C G lim B G : dom G dom G B
7 3 6 syl φ G : dom G dom G B
8 7 simp1d φ G : dom G
9 7 simp2d φ dom G
10 7 simp3d φ B
11 eqid TopOpen fld = TopOpen fld
12 8 9 10 11 ellimc2 φ C G lim B C u TopOpen fld C u v TopOpen fld B v G v dom G B u
13 3 12 mpbid φ C u TopOpen fld C u v TopOpen fld B v G v dom G B u
14 13 simprd φ u TopOpen fld C u v TopOpen fld B v G v dom G B u
15 14 r19.21bi φ u TopOpen fld C u v TopOpen fld B v G v dom G B u
16 15 imp φ u TopOpen fld C u v TopOpen fld B v G v dom G B u
17 simp1ll φ u TopOpen fld C u v TopOpen fld B v G v dom G B u φ
18 simp2 φ u TopOpen fld C u v TopOpen fld B v G v dom G B u v TopOpen fld
19 simp3l φ u TopOpen fld C u v TopOpen fld B v G v dom G B u B v
20 limcrcl B F lim A F : dom F dom F A
21 2 20 syl φ F : dom F dom F A
22 21 simp1d φ F : dom F
23 21 simp2d φ dom F
24 21 simp3d φ A
25 22 23 24 11 ellimc2 φ B F lim A B v TopOpen fld B v w TopOpen fld A w F w dom F A v
26 2 25 mpbid φ B v TopOpen fld B v w TopOpen fld A w F w dom F A v
27 26 simprd φ v TopOpen fld B v w TopOpen fld A w F w dom F A v
28 27 r19.21bi φ v TopOpen fld B v w TopOpen fld A w F w dom F A v
29 28 imp φ v TopOpen fld B v w TopOpen fld A w F w dom F A v
30 17 18 19 29 syl21anc φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld A w F w dom F A v
31 imaco G F w dom F A = G F w dom F A
32 17 ad2antrr φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld F w dom F A v φ
33 simpl3r φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld G v dom G B u
34 33 adantr φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld F w dom F A v G v dom G B u
35 simpr φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld F w dom F A v F w dom F A v
36 simpr φ F w dom F A v F w dom F A v
37 imassrn F w dom F A ran F
38 37 1 sstrid φ F w dom F A dom G B
39 38 adantr φ F w dom F A v F w dom F A dom G B
40 36 39 ssind φ F w dom F A v F w dom F A v dom G B
41 imass2 F w dom F A v dom G B G F w dom F A G v dom G B
42 40 41 syl φ F w dom F A v G F w dom F A G v dom G B
43 42 adantlr φ G v dom G B u F w dom F A v G F w dom F A G v dom G B
44 simplr φ G v dom G B u F w dom F A v G v dom G B u
45 43 44 sstrd φ G v dom G B u F w dom F A v G F w dom F A u
46 32 34 35 45 syl21anc φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld F w dom F A v G F w dom F A u
47 31 46 eqsstrid φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld F w dom F A v G F w dom F A u
48 47 ex φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld F w dom F A v G F w dom F A u
49 48 anim2d φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld A w F w dom F A v A w G F w dom F A u
50 49 reximdva φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld A w F w dom F A v w TopOpen fld A w G F w dom F A u
51 30 50 mpd φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld A w G F w dom F A u
52 51 rexlimdv3a φ u TopOpen fld C u v TopOpen fld B v G v dom G B u w TopOpen fld A w G F w dom F A u
53 16 52 mpd φ u TopOpen fld C u w TopOpen fld A w G F w dom F A u
54 53 ex φ u TopOpen fld C u w TopOpen fld A w G F w dom F A u
55 54 ralrimiva φ u TopOpen fld C u w TopOpen fld A w G F w dom F A u
56 22 ffund φ Fun F
57 fdmrn Fun F F : dom F ran F
58 56 57 sylib φ F : dom F ran F
59 1 difss2d φ ran F dom G
60 58 59 fssd φ F : dom F dom G
61 fco G : dom G F : dom F dom G G F : dom F
62 8 60 61 syl2anc φ G F : dom F
63 62 23 24 11 ellimc2 φ C G F lim A C u TopOpen fld C u w TopOpen fld A w G F w dom F A u
64 5 55 63 mpbir2and φ C G F lim A