Metamath Proof Explorer


Theorem liminflt

Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflt.k _ k F
liminflt.m φ M
liminflt.z Z = M
liminflt.f φ F : Z
liminflt.r φ lim inf F
liminflt.x φ X +
Assertion liminflt φ j Z k j lim inf F < F k + X

Proof

Step Hyp Ref Expression
1 liminflt.k _ k F
2 liminflt.m φ M
3 liminflt.z Z = M
4 liminflt.f φ F : Z
5 liminflt.r φ lim inf F
6 liminflt.x φ X +
7 2 3 4 5 6 liminfltlem φ i Z l i lim inf F < F l + X
8 fveq2 i = j i = j
9 8 raleqdv i = j l i lim inf F < F l + X l j lim inf F < F l + X
10 nfcv _ k lim inf
11 10 1 nffv _ k lim inf F
12 nfcv _ k <
13 nfcv _ k l
14 1 13 nffv _ k F l
15 nfcv _ k +
16 nfcv _ k X
17 14 15 16 nfov _ k F l + X
18 11 12 17 nfbr k lim inf F < F l + X
19 nfv l lim inf F < F k + X
20 fveq2 l = k F l = F k
21 20 oveq1d l = k F l + X = F k + X
22 21 breq2d l = k lim inf F < F l + X lim inf F < F k + X
23 18 19 22 cbvralw l j lim inf F < F l + X k j lim inf F < F k + X
24 23 a1i i = j l j lim inf F < F l + X k j lim inf F < F k + X
25 9 24 bitrd i = j l i lim inf F < F l + X k j lim inf F < F k + X
26 25 cbvrexvw i Z l i lim inf F < F l + X j Z k j lim inf F < F k + X
27 7 26 sylib φ j Z k j lim inf F < F k + X