Metamath Proof Explorer


Theorem liminfval4

Description: Alternate definition of liminf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfval4.x xφ
liminfval4.a φAV
liminfval4.m φM
liminfval4.b φxAM+∞B
Assertion liminfval4 φlim infxAB=lim supxAB

Proof

Step Hyp Ref Expression
1 liminfval4.x xφ
2 liminfval4.a φAV
3 liminfval4.m φM
4 liminfval4.b φxAM+∞B
5 inss1 AM+∞A
6 5 a1i φAM+∞A
7 2 6 ssexd φAM+∞V
8 4 rexrd φxAM+∞B*
9 1 7 8 liminfvalxrmpt φlim infxAM+∞B=lim supxAM+∞B
10 4 rexnegd φxAM+∞B=B
11 1 10 mpteq2da φxAM+∞B=xAM+∞B
12 11 fveq2d φlim supxAM+∞B=lim supxAM+∞B
13 12 xnegeqd φlim supxAM+∞B=lim supxAM+∞B
14 9 13 eqtrd φlim infxAM+∞B=lim supxAM+∞B
15 eqid M+∞=M+∞
16 3 15 2 liminfresicompt φlim infxAM+∞B=lim infxAB
17 16 eqcomd φlim infxAB=lim infxAM+∞B
18 2 3 15 limsupresicompt φlim supxAB=lim supxAM+∞B
19 18 xnegeqd φlim supxAB=lim supxAM+∞B
20 14 17 19 3eqtr4d φlim infxAB=lim supxAB