Description: Alternate definition of liminf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminfval4.x | |
|
liminfval4.a | |
||
liminfval4.m | |
||
liminfval4.b | |
||
Assertion | liminfval4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfval4.x | |
|
2 | liminfval4.a | |
|
3 | liminfval4.m | |
|
4 | liminfval4.b | |
|
5 | inss1 | |
|
6 | 5 | a1i | |
7 | 2 6 | ssexd | |
8 | 4 | rexrd | |
9 | 1 7 8 | liminfvalxrmpt | |
10 | 4 | rexnegd | |
11 | 1 10 | mpteq2da | |
12 | 11 | fveq2d | |
13 | 12 | xnegeqd | |
14 | 9 13 | eqtrd | |
15 | eqid | |
|
16 | 3 15 2 | liminfresicompt | |
17 | 16 | eqcomd | |
18 | 2 3 15 | limsupresicompt | |
19 | 18 | xnegeqd | |
20 | 14 17 19 | 3eqtr4d | |