Metamath Proof Explorer


Theorem limsupbnd1f

Description: If a sequence is eventually at most A , then the limsup is also at most A . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupbnd1f.1 _jF
limsupbnd1f.2 φB
limsupbnd1f.3 φF:B*
limsupbnd1f.4 φA*
limsupbnd1f.5 φkjBkjFjA
Assertion limsupbnd1f φlim supFA

Proof

Step Hyp Ref Expression
1 limsupbnd1f.1 _jF
2 limsupbnd1f.2 φB
3 limsupbnd1f.3 φF:B*
4 limsupbnd1f.4 φA*
5 limsupbnd1f.5 φkjBkjFjA
6 breq1 k=ikjij
7 6 imbi1d k=ikjFjAijFjA
8 7 ralbidv k=ijBkjFjAjBijFjA
9 nfv lijFjA
10 nfv jil
11 nfcv _jl
12 1 11 nffv _jFl
13 nfcv _j
14 nfcv _jA
15 12 13 14 nfbr jFlA
16 10 15 nfim jilFlA
17 breq2 j=lijil
18 fveq2 j=lFj=Fl
19 18 breq1d j=lFjAFlA
20 17 19 imbi12d j=lijFjAilFlA
21 9 16 20 cbvralw jBijFjAlBilFlA
22 21 a1i k=ijBijFjAlBilFlA
23 8 22 bitrd k=ijBkjFjAlBilFlA
24 23 cbvrexvw kjBkjFjAilBilFlA
25 5 24 sylib φilBilFlA
26 2 3 4 25 limsupbnd1 φlim supFA