| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limsupequzmptlem.j |  | 
						
							| 2 |  | limsupequzmptlem.m |  | 
						
							| 3 |  | limsupequzmptlem.n |  | 
						
							| 4 |  | limsupequzmptlem.a |  | 
						
							| 5 |  | limsupequzmptlem.b |  | 
						
							| 6 |  | limsupequzmptlem.c |  | 
						
							| 7 |  | limsupequzmptlem.d |  | 
						
							| 8 |  | limsupequzmptlem.k |  | 
						
							| 9 |  | nfmpt1 |  | 
						
							| 10 |  | nfmpt1 |  | 
						
							| 11 | 4 | eqcomi |  | 
						
							| 12 | 11 | eleq2i |  | 
						
							| 13 | 12 | biimpi |  | 
						
							| 14 | 13 6 | sylan2 |  | 
						
							| 15 | 4 | mpteq1i |  | 
						
							| 16 | 1 14 15 | fnmptd |  | 
						
							| 17 | 5 | eleq2i |  | 
						
							| 18 | 17 | bicomi |  | 
						
							| 19 | 18 | biimpi |  | 
						
							| 20 | 19 7 | sylan2 |  | 
						
							| 21 | 5 | mpteq1i |  | 
						
							| 22 | 1 20 21 | fnmptd |  | 
						
							| 23 | 3 2 | ifcld |  | 
						
							| 24 | 8 23 | eqeltrid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 2 | zred |  | 
						
							| 27 | 3 | zred |  | 
						
							| 28 |  | max1 |  | 
						
							| 29 | 26 27 28 | syl2anc |  | 
						
							| 30 | 29 8 | breqtrrdi |  | 
						
							| 31 | 25 2 24 30 | eluzd |  | 
						
							| 32 | 31 | uzssd |  | 
						
							| 33 | 11 | a1i |  | 
						
							| 34 | 32 33 | sseqtrd |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 | 35 36 | sseldd |  | 
						
							| 38 | 37 6 | syldan |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 39 | fvmpt2 |  | 
						
							| 41 | 37 38 40 | syl2anc |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 |  | max2 |  | 
						
							| 44 | 26 27 43 | syl2anc |  | 
						
							| 45 | 44 8 | breqtrrdi |  | 
						
							| 46 | 42 3 24 45 | eluzd |  | 
						
							| 47 | 46 | uzssd |  | 
						
							| 48 | 5 | eqcomi |  | 
						
							| 49 | 48 | a1i |  | 
						
							| 50 | 47 49 | sseqtrd |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 | 51 36 | sseldd |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 | 53 | fvmpt2 |  | 
						
							| 55 | 52 38 54 | syl2anc |  | 
						
							| 56 | 41 55 | eqtr4d |  | 
						
							| 57 | 1 9 10 2 16 3 22 24 56 | limsupequz |  |