Metamath Proof Explorer


Theorem limsupequzmptlem

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequzmptlem.j j φ
limsupequzmptlem.m φ M
limsupequzmptlem.n φ N
limsupequzmptlem.a A = M
limsupequzmptlem.b B = N
limsupequzmptlem.c φ j A C V
limsupequzmptlem.d φ j B C W
limsupequzmptlem.k K = if M N N M
Assertion limsupequzmptlem φ lim sup j A C = lim sup j B C

Proof

Step Hyp Ref Expression
1 limsupequzmptlem.j j φ
2 limsupequzmptlem.m φ M
3 limsupequzmptlem.n φ N
4 limsupequzmptlem.a A = M
5 limsupequzmptlem.b B = N
6 limsupequzmptlem.c φ j A C V
7 limsupequzmptlem.d φ j B C W
8 limsupequzmptlem.k K = if M N N M
9 nfmpt1 _ j j A C
10 nfmpt1 _ j j B C
11 4 eqcomi M = A
12 11 eleq2i j M j A
13 12 biimpi j M j A
14 13 6 sylan2 φ j M C V
15 4 mpteq1i j A C = j M C
16 1 14 15 fnmptd φ j A C Fn M
17 5 eleq2i j B j N
18 17 bicomi j N j B
19 18 biimpi j N j B
20 19 7 sylan2 φ j N C W
21 5 mpteq1i j B C = j N C
22 1 20 21 fnmptd φ j B C Fn N
23 3 2 ifcld φ if M N N M
24 8 23 eqeltrid φ K
25 eqid M = M
26 2 zred φ M
27 3 zred φ N
28 max1 M N M if M N N M
29 26 27 28 syl2anc φ M if M N N M
30 29 8 breqtrrdi φ M K
31 25 2 24 30 eluzd φ K M
32 31 uzssd φ K M
33 11 a1i φ M = A
34 32 33 sseqtrd φ K A
35 34 adantr φ j K K A
36 simpr φ j K j K
37 35 36 sseldd φ j K j A
38 37 6 syldan φ j K C V
39 eqid j A C = j A C
40 39 fvmpt2 j A C V j A C j = C
41 37 38 40 syl2anc φ j K j A C j = C
42 eqid N = N
43 max2 M N N if M N N M
44 26 27 43 syl2anc φ N if M N N M
45 44 8 breqtrrdi φ N K
46 42 3 24 45 eluzd φ K N
47 46 uzssd φ K N
48 5 eqcomi N = B
49 48 a1i φ N = B
50 47 49 sseqtrd φ K B
51 50 adantr φ j K K B
52 51 36 sseldd φ j K j B
53 eqid j B C = j B C
54 53 fvmpt2 j B C V j B C j = C
55 52 38 54 syl2anc φ j K j B C j = C
56 41 55 eqtr4d φ j K j A C j = j B C j
57 1 9 10 2 16 3 22 24 56 limsupequz φ lim sup j A C = lim sup j B C