Metamath Proof Explorer


Theorem limsupge

Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupge.b φ B
limsupge.f φ F : B *
limsupge.a φ A *
Assertion limsupge φ A lim sup F k A sup F k +∞ * * <

Proof

Step Hyp Ref Expression
1 limsupge.b φ B
2 limsupge.f φ F : B *
3 limsupge.a φ A *
4 eqid j sup F j +∞ * * < = j sup F j +∞ * * <
5 4 limsuple B F : B * A * A lim sup F i A j sup F j +∞ * * < i
6 1 2 3 5 syl3anc φ A lim sup F i A j sup F j +∞ * * < i
7 oveq1 j = i j +∞ = i +∞
8 7 imaeq2d j = i F j +∞ = F i +∞
9 8 ineq1d j = i F j +∞ * = F i +∞ *
10 9 supeq1d j = i sup F j +∞ * * < = sup F i +∞ * * <
11 simpr φ i i
12 xrltso < Or *
13 12 supex sup F i +∞ * * < V
14 13 a1i φ i sup F i +∞ * * < V
15 4 10 11 14 fvmptd3 φ i j sup F j +∞ * * < i = sup F i +∞ * * <
16 15 breq2d φ i A j sup F j +∞ * * < i A sup F i +∞ * * <
17 16 ralbidva φ i A j sup F j +∞ * * < i i A sup F i +∞ * * <
18 6 17 bitrd φ A lim sup F i A sup F i +∞ * * <
19 oveq1 i = k i +∞ = k +∞
20 19 imaeq2d i = k F i +∞ = F k +∞
21 20 ineq1d i = k F i +∞ * = F k +∞ *
22 21 supeq1d i = k sup F i +∞ * * < = sup F k +∞ * * <
23 22 breq2d i = k A sup F i +∞ * * < A sup F k +∞ * * <
24 23 cbvralvw i A sup F i +∞ * * < k A sup F k +∞ * * <
25 24 a1i φ i A sup F i +∞ * * < k A sup F k +∞ * * <
26 18 25 bitrd φ A lim sup F k A sup F k +∞ * * <