Metamath Proof Explorer


Theorem limsuplt2

Description: The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsuplt2.1 φB
limsuplt2.2 φF:B*
limsuplt2.3 φA*
Assertion limsuplt2 φlim supF<AksupFk+∞**<<A

Proof

Step Hyp Ref Expression
1 limsuplt2.1 φB
2 limsuplt2.2 φF:B*
3 limsuplt2.3 φA*
4 eqid jsupFj+∞**<=jsupFj+∞**<
5 4 limsuplt BF:B*A*lim supF<AijsupFj+∞**<i<A
6 1 2 3 5 syl3anc φlim supF<AijsupFj+∞**<i<A
7 oveq1 j=ij+∞=i+∞
8 7 imaeq2d j=iFj+∞=Fi+∞
9 8 ineq1d j=iFj+∞*=Fi+∞*
10 9 supeq1d j=isupFj+∞**<=supFi+∞**<
11 simpr φii
12 xrltso <Or*
13 12 supex supFi+∞**<V
14 13 a1i φisupFi+∞**<V
15 4 10 11 14 fvmptd3 φijsupFj+∞**<i=supFi+∞**<
16 15 breq1d φijsupFj+∞**<i<AsupFi+∞**<<A
17 16 rexbidva φijsupFj+∞**<i<AisupFi+∞**<<A
18 oveq1 i=ki+∞=k+∞
19 18 imaeq2d i=kFi+∞=Fk+∞
20 19 ineq1d i=kFi+∞*=Fk+∞*
21 20 supeq1d i=ksupFi+∞**<=supFk+∞**<
22 21 breq1d i=ksupFi+∞**<<AsupFk+∞**<<A
23 22 cbvrexvw isupFi+∞**<<AksupFk+∞**<<A
24 23 a1i φisupFi+∞**<<AksupFk+∞**<<A
25 6 17 24 3bitrd φlim supF<AksupFk+∞**<<A