Metamath Proof Explorer


Theorem limsupmnfuz

Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupmnfuz.1 _jF
limsupmnfuz.2 φM
limsupmnfuz.3 Z=M
limsupmnfuz.4 φF:Z*
Assertion limsupmnfuz φlim supF=−∞xkZjkFjx

Proof

Step Hyp Ref Expression
1 limsupmnfuz.1 _jF
2 limsupmnfuz.2 φM
3 limsupmnfuz.3 Z=M
4 limsupmnfuz.4 φF:Z*
5 2 3 4 limsupmnfuzlem φlim supF=−∞yiZliFly
6 breq2 y=xFlyFlx
7 6 ralbidv y=xliFlyliFlx
8 7 rexbidv y=xiZliFlyiZliFlx
9 fveq2 i=ki=k
10 9 raleqdv i=kliFlxlkFlx
11 nfcv _jl
12 1 11 nffv _jFl
13 nfcv _j
14 nfcv _jx
15 12 13 14 nfbr jFlx
16 nfv lFjx
17 fveq2 l=jFl=Fj
18 17 breq1d l=jFlxFjx
19 15 16 18 cbvralw lkFlxjkFjx
20 19 a1i i=klkFlxjkFjx
21 10 20 bitrd i=kliFlxjkFjx
22 21 cbvrexvw iZliFlxkZjkFjx
23 22 a1i y=xiZliFlxkZjkFjx
24 8 23 bitrd y=xiZliFlykZjkFjx
25 24 cbvralvw yiZliFlyxkZjkFjx
26 25 a1i φyiZliFlyxkZjkFjx
27 5 26 bitrd φlim supF=−∞xkZjkFjx