Metamath Proof Explorer


Theorem limsupmnfuz

Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupmnfuz.1 _ j F
limsupmnfuz.2 φ M
limsupmnfuz.3 Z = M
limsupmnfuz.4 φ F : Z *
Assertion limsupmnfuz φ lim sup F = −∞ x k Z j k F j x

Proof

Step Hyp Ref Expression
1 limsupmnfuz.1 _ j F
2 limsupmnfuz.2 φ M
3 limsupmnfuz.3 Z = M
4 limsupmnfuz.4 φ F : Z *
5 2 3 4 limsupmnfuzlem φ lim sup F = −∞ y i Z l i F l y
6 breq2 y = x F l y F l x
7 6 ralbidv y = x l i F l y l i F l x
8 7 rexbidv y = x i Z l i F l y i Z l i F l x
9 fveq2 i = k i = k
10 9 raleqdv i = k l i F l x l k F l x
11 nfcv _ j l
12 1 11 nffv _ j F l
13 nfcv _ j
14 nfcv _ j x
15 12 13 14 nfbr j F l x
16 nfv l F j x
17 fveq2 l = j F l = F j
18 17 breq1d l = j F l x F j x
19 15 16 18 cbvralw l k F l x j k F j x
20 19 a1i i = k l k F l x j k F j x
21 10 20 bitrd i = k l i F l x j k F j x
22 21 cbvrexvw i Z l i F l x k Z j k F j x
23 22 a1i y = x i Z l i F l x k Z j k F j x
24 8 23 bitrd y = x i Z l i F l y k Z j k F j x
25 24 cbvralvw y i Z l i F l y x k Z j k F j x
26 25 a1i φ y i Z l i F l y x k Z j k F j x
27 5 26 bitrd φ lim sup F = −∞ x k Z j k F j x