Metamath Proof Explorer


Theorem lincellss

Description: A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Assertion lincellss MLModSLSubSpMVSFBaseScalarMVfinSupp0ScalarMFFlinCMVS

Proof

Step Hyp Ref Expression
1 simpl1 MLModSLSubSpMVSFBaseScalarMVfinSupp0ScalarMFMLMod
2 simprl MLModSLSubSpMVSFBaseScalarMVfinSupp0ScalarMFFBaseScalarMV
3 ssexg VSSLSubSpMVV
4 3 ancoms SLSubSpMVSVV
5 eqid BaseM=BaseM
6 eqid LSubSpM=LSubSpM
7 5 6 lssss SLSubSpMSBaseM
8 sstr VSSBaseMVBaseM
9 elpwg VVV𝒫BaseMVBaseM
10 8 9 syl5ibrcom VSSBaseMVVV𝒫BaseM
11 10 expcom SBaseMVSVVV𝒫BaseM
12 7 11 syl SLSubSpMVSVVV𝒫BaseM
13 12 imp SLSubSpMVSVVV𝒫BaseM
14 4 13 mpd SLSubSpMVSV𝒫BaseM
15 14 3adant1 MLModSLSubSpMVSV𝒫BaseM
16 15 adantr MLModSLSubSpMVSFBaseScalarMVfinSupp0ScalarMFV𝒫BaseM
17 lincval MLModFBaseScalarMVV𝒫BaseMFlinCMV=MvVFvMv
18 1 2 16 17 syl3anc MLModSLSubSpMVSFBaseScalarMVfinSupp0ScalarMFFlinCMV=MvVFvMv
19 eqid ScalarM=ScalarM
20 eqid BaseScalarM=BaseScalarM
21 6 19 20 gsumlsscl MLModSLSubSpMVSFBaseScalarMVfinSupp0ScalarMFMvVFvMvS
22 21 imp MLModSLSubSpMVSFBaseScalarMVfinSupp0ScalarMFMvVFvMvS
23 18 22 eqeltrd MLModSLSubSpMVSFBaseScalarMVfinSupp0ScalarMFFlinCMVS
24 23 ex MLModSLSubSpMVSFBaseScalarMVfinSupp0ScalarMFFlinCMVS