Metamath Proof Explorer


Theorem lincellss

Description: A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Assertion lincellss M LMod S LSubSp M V S F Base Scalar M V finSupp 0 Scalar M F F linC M V S

Proof

Step Hyp Ref Expression
1 simpl1 M LMod S LSubSp M V S F Base Scalar M V finSupp 0 Scalar M F M LMod
2 simprl M LMod S LSubSp M V S F Base Scalar M V finSupp 0 Scalar M F F Base Scalar M V
3 ssexg V S S LSubSp M V V
4 3 ancoms S LSubSp M V S V V
5 eqid Base M = Base M
6 eqid LSubSp M = LSubSp M
7 5 6 lssss S LSubSp M S Base M
8 sstr V S S Base M V Base M
9 elpwg V V V 𝒫 Base M V Base M
10 8 9 syl5ibrcom V S S Base M V V V 𝒫 Base M
11 10 expcom S Base M V S V V V 𝒫 Base M
12 7 11 syl S LSubSp M V S V V V 𝒫 Base M
13 12 imp S LSubSp M V S V V V 𝒫 Base M
14 4 13 mpd S LSubSp M V S V 𝒫 Base M
15 14 3adant1 M LMod S LSubSp M V S V 𝒫 Base M
16 15 adantr M LMod S LSubSp M V S F Base Scalar M V finSupp 0 Scalar M F V 𝒫 Base M
17 lincval M LMod F Base Scalar M V V 𝒫 Base M F linC M V = M v V F v M v
18 1 2 16 17 syl3anc M LMod S LSubSp M V S F Base Scalar M V finSupp 0 Scalar M F F linC M V = M v V F v M v
19 eqid Scalar M = Scalar M
20 eqid Base Scalar M = Base Scalar M
21 6 19 20 gsumlsscl M LMod S LSubSp M V S F Base Scalar M V finSupp 0 Scalar M F M v V F v M v S
22 21 imp M LMod S LSubSp M V S F Base Scalar M V finSupp 0 Scalar M F M v V F v M v S
23 18 22 eqeltrd M LMod S LSubSp M V S F Base Scalar M V finSupp 0 Scalar M F F linC M V S
24 23 ex M LMod S LSubSp M V S F Base Scalar M V finSupp 0 Scalar M F F linC M V S