Metamath Proof Explorer


Theorem linindslinci

Description: The implications of being a linearly independent subset and a linear combination of this subset being 0. (Contributed by AV, 24-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses islininds.b B=BaseM
islininds.z Z=0M
islininds.r R=ScalarM
islininds.e E=BaseR
islininds.0 0˙=0R
Assertion linindslinci SlinIndSMFESfinSupp0˙FFlinCMS=ZxSFx=0˙

Proof

Step Hyp Ref Expression
1 islininds.b B=BaseM
2 islininds.z Z=0M
3 islininds.r R=ScalarM
4 islininds.e E=BaseR
5 islininds.0 0˙=0R
6 1 2 3 4 5 linindsi SlinIndSMS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙
7 breq1 f=FfinSupp0˙ffinSupp0˙F
8 oveq1 f=FflinCMS=FlinCMS
9 8 eqeq1d f=FflinCMS=ZFlinCMS=Z
10 7 9 anbi12d f=FfinSupp0˙fflinCMS=ZfinSupp0˙FFlinCMS=Z
11 fveq1 f=Ffx=Fx
12 11 eqeq1d f=Ffx=0˙Fx=0˙
13 12 ralbidv f=FxSfx=0˙xSFx=0˙
14 10 13 imbi12d f=FfinSupp0˙fflinCMS=ZxSfx=0˙finSupp0˙FFlinCMS=ZxSFx=0˙
15 14 rspcv FESfESfinSupp0˙fflinCMS=ZxSfx=0˙finSupp0˙FFlinCMS=ZxSFx=0˙
16 15 com23 FESfinSupp0˙FFlinCMS=ZfESfinSupp0˙fflinCMS=ZxSfx=0˙xSFx=0˙
17 16 3impib FESfinSupp0˙FFlinCMS=ZfESfinSupp0˙fflinCMS=ZxSfx=0˙xSFx=0˙
18 17 com12 fESfinSupp0˙fflinCMS=ZxSfx=0˙FESfinSupp0˙FFlinCMS=ZxSFx=0˙
19 6 18 simpl2im SlinIndSMFESfinSupp0˙FFlinCMS=ZxSFx=0˙
20 19 imp SlinIndSMFESfinSupp0˙FFlinCMS=ZxSFx=0˙