Metamath Proof Explorer


Theorem lmiopp

Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of Schwabhauser p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses lmiopp.p P=BaseG
lmiopp.m -˙=distG
lmiopp.i I=ItvG
lmiopp.l L=Line𝒢G
lmiopp.g φG𝒢Tarski
lmiopp.h φGDim𝒢2
lmiopp.d φDranL
lmiopp.o O=ab|aPDbPDtDtaIb
lmiopp.n M=lInv𝒢GD
lmiopp.a φAP
lmiopp.1 φ¬AD
Assertion lmiopp φAOMA

Proof

Step Hyp Ref Expression
1 lmiopp.p P=BaseG
2 lmiopp.m -˙=distG
3 lmiopp.i I=ItvG
4 lmiopp.l L=Line𝒢G
5 lmiopp.g φG𝒢Tarski
6 lmiopp.h φGDim𝒢2
7 lmiopp.d φDranL
8 lmiopp.o O=ab|aPDbPDtDtaIb
9 lmiopp.n M=lInv𝒢GD
10 lmiopp.a φAP
11 lmiopp.1 φ¬AD
12 1 2 3 5 6 9 4 7 10 lmicl φMAP
13 eqidd φMA=MA
14 1 2 3 5 6 9 4 7 10 12 islmib φMA=MAAmid𝒢GMADD𝒢GALMAA=MA
15 13 14 mpbid φAmid𝒢GMADD𝒢GALMAA=MA
16 15 simpld φAmid𝒢GMAD
17 1 2 3 5 6 9 4 7 10 lmilmi φMMA=A
18 17 eqeq1d φMMA=MAA=MA
19 1 2 3 5 6 9 4 7 12 lmiinv φMMA=MAMAD
20 eqcom A=MAMA=A
21 20 a1i φA=MAMA=A
22 18 19 21 3bitr3d φMADMA=A
23 1 2 3 5 6 9 4 7 10 lmiinv φMA=AAD
24 22 23 bitrd φMADAD
25 11 24 mtbird φ¬MAD
26 1 2 3 5 6 10 12 midbtwn φAmid𝒢GMAAIMA
27 1 2 3 8 10 12 16 11 25 26 islnoppd φAOMA