Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of Schwabhauser p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmiopp.p | |
|
lmiopp.m | |
||
lmiopp.i | |
||
lmiopp.l | |
||
lmiopp.g | |
||
lmiopp.h | |
||
lmiopp.d | |
||
lmiopp.o | |
||
lmiopp.n | |
||
lmiopp.a | |
||
lmiopp.1 | |
||
Assertion | lmiopp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmiopp.p | |
|
2 | lmiopp.m | |
|
3 | lmiopp.i | |
|
4 | lmiopp.l | |
|
5 | lmiopp.g | |
|
6 | lmiopp.h | |
|
7 | lmiopp.d | |
|
8 | lmiopp.o | |
|
9 | lmiopp.n | |
|
10 | lmiopp.a | |
|
11 | lmiopp.1 | |
|
12 | 1 2 3 5 6 9 4 7 10 | lmicl | |
13 | eqidd | |
|
14 | 1 2 3 5 6 9 4 7 10 12 | islmib | |
15 | 13 14 | mpbid | |
16 | 15 | simpld | |
17 | 1 2 3 5 6 9 4 7 10 | lmilmi | |
18 | 17 | eqeq1d | |
19 | 1 2 3 5 6 9 4 7 12 | lmiinv | |
20 | eqcom | |
|
21 | 20 | a1i | |
22 | 18 19 21 | 3bitr3d | |
23 | 1 2 3 5 6 9 4 7 10 | lmiinv | |
24 | 22 23 | bitrd | |
25 | 11 24 | mtbird | |
26 | 1 2 3 5 6 10 12 | midbtwn | |
27 | 1 2 3 8 10 12 16 11 25 26 | islnoppd | |