Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmisfree.j | |
|
lmisfree.f | |
||
Assertion | lmisfree | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmisfree.j | |
|
2 | lmisfree.f | |
|
3 | n0 | |
|
4 | vex | |
|
5 | 4 | enref | |
6 | 2 1 | lbslcic | |
7 | 5 6 | mp3an3 | |
8 | oveq2 | |
|
9 | 8 | breq2d | |
10 | 4 9 | spcev | |
11 | 7 10 | syl | |
12 | 11 | ex | |
13 | 12 | exlimdv | |
14 | 3 13 | biimtrid | |
15 | lmicsym | |
|
16 | lmiclcl | |
|
17 | 2 | lmodring | |
18 | vex | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 19 20 21 | frlmlbs | |
23 | 17 18 22 | sylancl | |
24 | 23 | ne0d | |
25 | 16 24 | syl | |
26 | 21 1 | lmiclbs | |
27 | 15 25 26 | sylc | |
28 | 27 | exlimiv | |
29 | 14 28 | impbid1 | |