Metamath Proof Explorer


Theorem lnhl

Description: Either a point C on the line AB is on the same side as A or on the opposite side. (Contributed by Thierry Arnoux, 21-Sep-2020)

Ref Expression
Hypotheses ishlg.p P=BaseG
ishlg.i I=ItvG
ishlg.k K=hl𝒢G
ishlg.a φAP
ishlg.b φBP
ishlg.c φCP
hlln.1 φG𝒢Tarski
hltr.d φDP
lnhl.l L=Line𝒢G
lnhl.1 φCALB
Assertion lnhl φCKBABAIC

Proof

Step Hyp Ref Expression
1 ishlg.p P=BaseG
2 ishlg.i I=ItvG
3 ishlg.k K=hl𝒢G
4 ishlg.a φAP
5 ishlg.b φBP
6 ishlg.c φCP
7 hlln.1 φG𝒢Tarski
8 hltr.d φDP
9 lnhl.l L=Line𝒢G
10 lnhl.1 φCALB
11 simpr φC=BC=B
12 eqid distG=distG
13 1 12 2 7 4 6 tgbtwntriv2 φCAIC
14 13 adantr φC=BCAIC
15 11 14 eqeltrrd φC=BBAIC
16 15 olcd φC=BCKBABAIC
17 1 9 2 7 4 5 10 tglngne φAB
18 1 9 2 7 4 5 17 6 tgellng φCALBCAIBACIBBAIC
19 10 18 mpbid φCAIBACIBBAIC
20 df-3or CAIBACIBBAICCAIBACIBBAIC
21 19 20 sylib φCAIBACIBBAIC
22 21 adantr φCBCAIBACIBBAIC
23 1 2 3 6 4 5 7 ishlg φCKBACBABCBIAABIC
24 23 adantr φCBCKBACBABCBIAABIC
25 df-3an CBABCBIAABICCBABCBIAABIC
26 24 25 bitrdi φCBCKBACBABCBIAABIC
27 17 anim1ci φCBCBAB
28 27 biantrurd φCBCBIAABICCBABCBIAABIC
29 7 adantr φCBG𝒢Tarski
30 5 adantr φCBBP
31 6 adantr φCBCP
32 4 adantr φCBAP
33 1 12 2 29 30 31 32 tgbtwncomb φCBCBIACAIB
34 1 12 2 29 30 32 31 tgbtwncomb φCBABICACIB
35 33 34 orbi12d φCBCBIAABICCAIBACIB
36 26 28 35 3bitr2d φCBCKBACAIBACIB
37 36 orbi1d φCBCKBABAICCAIBACIBBAIC
38 22 37 mpbird φCBCKBABAIC
39 16 38 pm2.61dane φCKBABAIC