Metamath Proof Explorer


Theorem lnnat

Description: A line (the join of two distinct atoms) is not an atom. (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses lnnat.j ˙=joinK
lnnat.a A=AtomsK
Assertion lnnat KHLPAQAPQ¬P˙QA

Proof

Step Hyp Ref Expression
1 lnnat.j ˙=joinK
2 lnnat.a A=AtomsK
3 simpl1 KHLPAQAPQKHL
4 simpl2 KHLPAQAPQPA
5 eqid 0.K=0.K
6 eqid K=K
7 5 6 2 atcvr0 KHLPA0.KKP
8 3 4 7 syl2anc KHLPAQAPQ0.KKP
9 1 6 2 atcvr1 KHLPAQAPQPKP˙Q
10 9 biimpa KHLPAQAPQPKP˙Q
11 hlop KHLKOP
12 eqid BaseK=BaseK
13 12 5 op0cl KOP0.KBaseK
14 3 11 13 3syl KHLPAQAPQ0.KBaseK
15 12 2 atbase PAPBaseK
16 4 15 syl KHLPAQAPQPBaseK
17 3 hllatd KHLPAQAPQKLat
18 simpl3 KHLPAQAPQQA
19 12 2 atbase QAQBaseK
20 18 19 syl KHLPAQAPQQBaseK
21 12 1 latjcl KLatPBaseKQBaseKP˙QBaseK
22 17 16 20 21 syl3anc KHLPAQAPQP˙QBaseK
23 12 6 cvrntr KHL0.KBaseKPBaseKP˙QBaseK0.KKPPKP˙Q¬0.KKP˙Q
24 3 14 16 22 23 syl13anc KHLPAQAPQ0.KKPPKP˙Q¬0.KKP˙Q
25 8 10 24 mp2and KHLPAQAPQ¬0.KKP˙Q
26 simpll1 KHLPAQAPQP˙QAKHL
27 5 6 2 atcvr0 KHLP˙QA0.KKP˙Q
28 26 27 sylancom KHLPAQAPQP˙QA0.KKP˙Q
29 25 28 mtand KHLPAQAPQ¬P˙QA
30 29 ex KHLPAQAPQ¬P˙QA
31 1 2 hlatjidm KHLPAP˙P=P
32 31 3adant3 KHLPAQAP˙P=P
33 simp2 KHLPAQAPA
34 32 33 eqeltrd KHLPAQAP˙PA
35 oveq2 P=QP˙P=P˙Q
36 35 eleq1d P=QP˙PAP˙QA
37 34 36 syl5ibcom KHLPAQAP=QP˙QA
38 37 necon3bd KHLPAQA¬P˙QAPQ
39 30 38 impbid KHLPAQAPQ¬P˙QA