| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnnat.j |
|
| 2 |
|
lnnat.a |
|
| 3 |
|
simpl1 |
|
| 4 |
|
simpl2 |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6 2
|
atcvr0 |
|
| 8 |
3 4 7
|
syl2anc |
|
| 9 |
1 6 2
|
atcvr1 |
|
| 10 |
9
|
biimpa |
|
| 11 |
|
hlop |
|
| 12 |
|
eqid |
|
| 13 |
12 5
|
op0cl |
|
| 14 |
3 11 13
|
3syl |
|
| 15 |
12 2
|
atbase |
|
| 16 |
4 15
|
syl |
|
| 17 |
3
|
hllatd |
|
| 18 |
|
simpl3 |
|
| 19 |
12 2
|
atbase |
|
| 20 |
18 19
|
syl |
|
| 21 |
12 1
|
latjcl |
|
| 22 |
17 16 20 21
|
syl3anc |
|
| 23 |
12 6
|
cvrntr |
|
| 24 |
3 14 16 22 23
|
syl13anc |
|
| 25 |
8 10 24
|
mp2and |
|
| 26 |
|
simpll1 |
|
| 27 |
5 6 2
|
atcvr0 |
|
| 28 |
26 27
|
sylancom |
|
| 29 |
25 28
|
mtand |
|
| 30 |
29
|
ex |
|
| 31 |
1 2
|
hlatjidm |
|
| 32 |
31
|
3adant3 |
|
| 33 |
|
simp2 |
|
| 34 |
32 33
|
eqeltrd |
|
| 35 |
|
oveq2 |
|
| 36 |
35
|
eleq1d |
|
| 37 |
34 36
|
syl5ibcom |
|
| 38 |
37
|
necon3bd |
|
| 39 |
30 38
|
impbid |
|