Metamath Proof Explorer


Theorem lnnat

Description: A line (the join of two distinct atoms) is not an atom. (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses lnnat.j
|- .\/ = ( join ` K )
lnnat.a
|- A = ( Atoms ` K )
Assertion lnnat
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> -. ( P .\/ Q ) e. A ) )

Proof

Step Hyp Ref Expression
1 lnnat.j
 |-  .\/ = ( join ` K )
2 lnnat.a
 |-  A = ( Atoms ` K )
3 simpl1
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. HL )
4 simpl2
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. A )
5 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
6 eqid
 |-  ( 
7 5 6 2 atcvr0
 |-  ( ( K e. HL /\ P e. A ) -> ( 0. ` K ) ( 
8 3 4 7 syl2anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( 0. ` K ) ( 
9 1 6 2 atcvr1
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> P ( 
10 9 biimpa
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P ( 
11 hlop
 |-  ( K e. HL -> K e. OP )
12 eqid
 |-  ( Base ` K ) = ( Base ` K )
13 12 5 op0cl
 |-  ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) )
14 3 11 13 3syl
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( 0. ` K ) e. ( Base ` K ) )
15 12 2 atbase
 |-  ( P e. A -> P e. ( Base ` K ) )
16 4 15 syl
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. ( Base ` K ) )
17 3 hllatd
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. Lat )
18 simpl3
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. A )
19 12 2 atbase
 |-  ( Q e. A -> Q e. ( Base ` K ) )
20 18 19 syl
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. ( Base ` K ) )
21 12 1 latjcl
 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) )
22 17 16 20 21 syl3anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( Base ` K ) )
23 12 6 cvrntr
 |-  ( ( K e. HL /\ ( ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( 0. ` K ) (  -. ( 0. ` K ) ( 
24 3 14 16 22 23 syl13anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( ( ( 0. ` K ) (  -. ( 0. ` K ) ( 
25 8 10 24 mp2and
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> -. ( 0. ` K ) ( 
26 simpll1
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) /\ ( P .\/ Q ) e. A ) -> K e. HL )
27 5 6 2 atcvr0
 |-  ( ( K e. HL /\ ( P .\/ Q ) e. A ) -> ( 0. ` K ) ( 
28 26 27 sylancom
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) /\ ( P .\/ Q ) e. A ) -> ( 0. ` K ) ( 
29 25 28 mtand
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> -. ( P .\/ Q ) e. A )
30 29 ex
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q -> -. ( P .\/ Q ) e. A ) )
31 1 2 hlatjidm
 |-  ( ( K e. HL /\ P e. A ) -> ( P .\/ P ) = P )
32 31 3adant3
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ P ) = P )
33 simp2
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> P e. A )
34 32 33 eqeltrd
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ P ) e. A )
35 oveq2
 |-  ( P = Q -> ( P .\/ P ) = ( P .\/ Q ) )
36 35 eleq1d
 |-  ( P = Q -> ( ( P .\/ P ) e. A <-> ( P .\/ Q ) e. A ) )
37 34 36 syl5ibcom
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P = Q -> ( P .\/ Q ) e. A ) )
38 37 necon3bd
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( -. ( P .\/ Q ) e. A -> P =/= Q ) )
39 30 38 impbid
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> -. ( P .\/ Q ) e. A ) )