Metamath Proof Explorer


Theorem logbge0b

Description: The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion logbge0b B 2 X + 0 log B X 1 X

Proof

Step Hyp Ref Expression
1 relogbval B 2 X + log B X = log X log B
2 1 breq2d B 2 X + 0 log B X 0 log X log B
3 relogcl X + log X
4 3 adantl B 2 X + log X
5 eluz2nn B 2 B
6 5 nnrpd B 2 B +
7 relogcl B + log B
8 6 7 syl B 2 log B
9 8 adantr B 2 X + log B
10 eluz2gt1 B 2 1 < B
11 loggt0b B + 0 < log B 1 < B
12 6 11 syl B 2 0 < log B 1 < B
13 10 12 mpbird B 2 0 < log B
14 13 adantr B 2 X + 0 < log B
15 ge0div log X log B 0 < log B 0 log X 0 log X log B
16 4 9 14 15 syl3anc B 2 X + 0 log X 0 log X log B
17 logge0b X + 0 log X 1 X
18 17 adantl B 2 X + 0 log X 1 X
19 2 16 18 3bitr2d B 2 X + 0 log B X 1 X