Metamath Proof Explorer


Theorem logbge0b

Description: The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion logbge0b B2X+0logBX1X

Proof

Step Hyp Ref Expression
1 relogbval B2X+logBX=logXlogB
2 1 breq2d B2X+0logBX0logXlogB
3 relogcl X+logX
4 3 adantl B2X+logX
5 eluz2nn B2B
6 5 nnrpd B2B+
7 relogcl B+logB
8 6 7 syl B2logB
9 8 adantr B2X+logB
10 eluz2gt1 B21<B
11 loggt0b B+0<logB1<B
12 6 11 syl B20<logB1<B
13 10 12 mpbird B20<logB
14 13 adantr B2X+0<logB
15 ge0div logXlogB0<logB0logX0logXlogB
16 4 9 14 15 syl3anc B2X+0logX0logXlogB
17 logge0b X+0logX1X
18 17 adantl B2X+0logX1X
19 2 16 18 3bitr2d B2X+0logBX1X