Description: The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | logfac | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | rpmulcl | |
|
3 | 2 | adantl | |
4 | fvi | |
|
5 | 4 | elv | |
6 | elfznn | |
|
7 | 6 | adantl | |
8 | 7 | nnrpd | |
9 | 5 8 | eqeltrid | |
10 | elnnuz | |
|
11 | 10 | biimpi | |
12 | relogmul | |
|
13 | 12 | adantl | |
14 | 5 | fveq2i | |
15 | 14 | a1i | |
16 | 3 9 11 13 15 | seqhomo | |
17 | facnn | |
|
18 | 17 | fveq2d | |
19 | eqidd | |
|
20 | relogcl | |
|
21 | 8 20 | syl | |
22 | 21 | recnd | |
23 | 19 11 22 | fsumser | |
24 | 16 18 23 | 3eqtr4d | |
25 | log1 | |
|
26 | sum0 | |
|
27 | 25 26 | eqtr4i | |
28 | fveq2 | |
|
29 | fac0 | |
|
30 | 28 29 | eqtrdi | |
31 | 30 | fveq2d | |
32 | oveq2 | |
|
33 | fz10 | |
|
34 | 32 33 | eqtrdi | |
35 | 34 | sumeq1d | |
36 | 27 31 35 | 3eqtr4a | |
37 | 24 36 | jaoi | |
38 | 1 37 | sylbi | |