Metamath Proof Explorer


Theorem logfac

Description: The logarithm of a factorial can be expressed as a finite sum of logs. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Assertion logfac N0logN!=k=1Nlogk

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 rpmulcl k+n+kn+
3 2 adantl Nk+n+kn+
4 fvi kVIk=k
5 4 elv Ik=k
6 elfznn k1Nk
7 6 adantl Nk1Nk
8 7 nnrpd Nk1Nk+
9 5 8 eqeltrid Nk1NIk+
10 elnnuz NN1
11 10 biimpi NN1
12 relogmul k+n+logkn=logk+logn
13 12 adantl Nk+n+logkn=logk+logn
14 5 fveq2i logIk=logk
15 14 a1i Nk1NlogIk=logk
16 3 9 11 13 15 seqhomo Nlogseq1×IN=seq1+logN
17 facnn NN!=seq1×IN
18 17 fveq2d NlogN!=logseq1×IN
19 eqidd Nk1Nlogk=logk
20 relogcl k+logk
21 8 20 syl Nk1Nlogk
22 21 recnd Nk1Nlogk
23 19 11 22 fsumser Nk=1Nlogk=seq1+logN
24 16 18 23 3eqtr4d NlogN!=k=1Nlogk
25 log1 log1=0
26 sum0 klogk=0
27 25 26 eqtr4i log1=klogk
28 fveq2 N=0N!=0!
29 fac0 0!=1
30 28 29 eqtrdi N=0N!=1
31 30 fveq2d N=0logN!=log1
32 oveq2 N=01N=10
33 fz10 10=
34 32 33 eqtrdi N=01N=
35 34 sumeq1d N=0k=1Nlogk=klogk
36 27 31 35 3eqtr4a N=0logN!=k=1Nlogk
37 24 36 jaoi NN=0logN!=k=1Nlogk
38 1 37 sylbi N0logN!=k=1Nlogk