Metamath Proof Explorer


Theorem lpbl

Description: Every ball around a limit point P of a subset S includes a member of S (even if P e/ S ). (Contributed by NM, 9-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 J=MetOpenD
Assertion lpbl D∞MetXSXPlimPtJSR+xSxPballDR

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 ineq1 x=PballDRxSP=PballDRSP
3 2 neeq1d x=PballDRxSPPballDRSP
4 simpl3 D∞MetXSXPlimPtJSR+PlimPtJS
5 simpl1 D∞MetXSXPlimPtJSR+D∞MetX
6 1 mopntop D∞MetXJTop
7 5 6 syl D∞MetXSXPlimPtJSR+JTop
8 simpl2 D∞MetXSXPlimPtJSR+SX
9 1 mopnuni D∞MetXX=J
10 5 9 syl D∞MetXSXPlimPtJSR+X=J
11 8 10 sseqtrd D∞MetXSXPlimPtJSR+SJ
12 eqid J=J
13 12 lpss JTopSJlimPtJSJ
14 7 11 13 syl2anc D∞MetXSXPlimPtJSR+limPtJSJ
15 14 4 sseldd D∞MetXSXPlimPtJSR+PJ
16 12 islp2 JTopSJPJPlimPtJSxneiJPxSP
17 7 11 15 16 syl3anc D∞MetXSXPlimPtJSR+PlimPtJSxneiJPxSP
18 4 17 mpbid D∞MetXSXPlimPtJSR+xneiJPxSP
19 15 10 eleqtrrd D∞MetXSXPlimPtJSR+PX
20 simpr D∞MetXSXPlimPtJSR+R+
21 1 blnei D∞MetXPXR+PballDRneiJP
22 5 19 20 21 syl3anc D∞MetXSXPlimPtJSR+PballDRneiJP
23 3 18 22 rspcdva D∞MetXSXPlimPtJSR+PballDRSP
24 elin xPballDRSPxPballDRxSP
25 eldifi xSPxS
26 25 anim2i xPballDRxSPxPballDRxS
27 26 ancomd xPballDRxSPxSxPballDR
28 24 27 sylbi xPballDRSPxSxPballDR
29 28 eximi xxPballDRSPxxSxPballDR
30 n0 PballDRSPxxPballDRSP
31 df-rex xSxPballDRxxSxPballDR
32 29 30 31 3imtr4i PballDRSPxSxPballDR
33 23 32 syl D∞MetXSXPlimPtJSR+xSxPballDR