Metamath Proof Explorer


Theorem lplni2

Description: The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012)

Ref Expression
Hypotheses lplni2.l ˙=K
lplni2.j ˙=joinK
lplni2.a A=AtomsK
lplni2.p P=LPlanesK
Assertion lplni2 KHLQARASAQR¬S˙Q˙RQ˙R˙SP

Proof

Step Hyp Ref Expression
1 lplni2.l ˙=K
2 lplni2.j ˙=joinK
3 lplni2.a A=AtomsK
4 lplni2.p P=LPlanesK
5 simp2 KHLQARASAQR¬S˙Q˙RQARASA
6 simp3l KHLQARASAQR¬S˙Q˙RQR
7 simp3r KHLQARASAQR¬S˙Q˙R¬S˙Q˙R
8 eqidd KHLQARASAQR¬S˙Q˙RQ˙R˙S=Q˙R˙S
9 neeq1 q=QqrQr
10 oveq1 q=Qq˙r=Q˙r
11 10 breq2d q=Qs˙q˙rs˙Q˙r
12 11 notbid q=Q¬s˙q˙r¬s˙Q˙r
13 10 oveq1d q=Qq˙r˙s=Q˙r˙s
14 13 eqeq2d q=QQ˙R˙S=q˙r˙sQ˙R˙S=Q˙r˙s
15 9 12 14 3anbi123d q=Qqr¬s˙q˙rQ˙R˙S=q˙r˙sQr¬s˙Q˙rQ˙R˙S=Q˙r˙s
16 neeq2 r=RQrQR
17 oveq2 r=RQ˙r=Q˙R
18 17 breq2d r=Rs˙Q˙rs˙Q˙R
19 18 notbid r=R¬s˙Q˙r¬s˙Q˙R
20 17 oveq1d r=RQ˙r˙s=Q˙R˙s
21 20 eqeq2d r=RQ˙R˙S=Q˙r˙sQ˙R˙S=Q˙R˙s
22 16 19 21 3anbi123d r=RQr¬s˙Q˙rQ˙R˙S=Q˙r˙sQR¬s˙Q˙RQ˙R˙S=Q˙R˙s
23 breq1 s=Ss˙Q˙RS˙Q˙R
24 23 notbid s=S¬s˙Q˙R¬S˙Q˙R
25 oveq2 s=SQ˙R˙s=Q˙R˙S
26 25 eqeq2d s=SQ˙R˙S=Q˙R˙sQ˙R˙S=Q˙R˙S
27 24 26 3anbi23d s=SQR¬s˙Q˙RQ˙R˙S=Q˙R˙sQR¬S˙Q˙RQ˙R˙S=Q˙R˙S
28 15 22 27 rspc3ev QARASAQR¬S˙Q˙RQ˙R˙S=Q˙R˙SqArAsAqr¬s˙q˙rQ˙R˙S=q˙r˙s
29 5 6 7 8 28 syl13anc KHLQARASAQR¬S˙Q˙RqArAsAqr¬s˙q˙rQ˙R˙S=q˙r˙s
30 simp1 KHLQARASAQR¬S˙Q˙RKHL
31 hllat KHLKLat
32 31 3ad2ant1 KHLQARASAQR¬S˙Q˙RKLat
33 simp21 KHLQARASAQR¬S˙Q˙RQA
34 simp22 KHLQARASAQR¬S˙Q˙RRA
35 eqid BaseK=BaseK
36 35 2 3 hlatjcl KHLQARAQ˙RBaseK
37 30 33 34 36 syl3anc KHLQARASAQR¬S˙Q˙RQ˙RBaseK
38 simp23 KHLQARASAQR¬S˙Q˙RSA
39 35 3 atbase SASBaseK
40 38 39 syl KHLQARASAQR¬S˙Q˙RSBaseK
41 35 2 latjcl KLatQ˙RBaseKSBaseKQ˙R˙SBaseK
42 32 37 40 41 syl3anc KHLQARASAQR¬S˙Q˙RQ˙R˙SBaseK
43 35 1 2 3 4 islpln5 KHLQ˙R˙SBaseKQ˙R˙SPqArAsAqr¬s˙q˙rQ˙R˙S=q˙r˙s
44 30 42 43 syl2anc KHLQARASAQR¬S˙Q˙RQ˙R˙SPqArAsAqr¬s˙q˙rQ˙R˙S=q˙r˙s
45 29 44 mpbird KHLQARASAQR¬S˙Q˙RQ˙R˙SP