Metamath Proof Explorer


Theorem lpolsetN

Description: The set of polarities of a left module or left vector space. (Contributed by NM, 24-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolset.v V=BaseW
lpolset.s S=LSubSpW
lpolset.z 0˙=0W
lpolset.a A=LSAtomsW
lpolset.h H=LSHypW
lpolset.p P=LPolW
Assertion lpolsetN WXP=oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=x

Proof

Step Hyp Ref Expression
1 lpolset.v V=BaseW
2 lpolset.s S=LSubSpW
3 lpolset.z 0˙=0W
4 lpolset.a A=LSAtomsW
5 lpolset.h H=LSHypW
6 lpolset.p P=LPolW
7 elex WXWV
8 fveq2 w=WLSubSpw=LSubSpW
9 8 2 eqtr4di w=WLSubSpw=S
10 fveq2 w=WBasew=BaseW
11 10 1 eqtr4di w=WBasew=V
12 11 pweqd w=W𝒫Basew=𝒫V
13 9 12 oveq12d w=WLSubSpw𝒫Basew=S𝒫V
14 11 fveq2d w=WoBasew=oV
15 fveq2 w=W0w=0W
16 15 3 eqtr4di w=W0w=0˙
17 16 sneqd w=W0w=0˙
18 14 17 eqeq12d w=WoBasew=0woV=0˙
19 11 sseq2d w=WxBasewxV
20 11 sseq2d w=WyBasewyV
21 19 20 3anbi12d w=WxBasewyBasewxyxVyVxy
22 21 imbi1d w=WxBasewyBasewxyoyoxxVyVxyoyox
23 22 2albidv w=WxyxBasewyBasewxyoyoxxyxVyVxyoyox
24 fveq2 w=WLSAtomsw=LSAtomsW
25 24 4 eqtr4di w=WLSAtomsw=A
26 fveq2 w=WLSHypw=LSHypW
27 26 5 eqtr4di w=WLSHypw=H
28 27 eleq2d w=WoxLSHypwoxH
29 28 anbi1d w=WoxLSHypwoox=xoxHoox=x
30 25 29 raleqbidv w=WxLSAtomswoxLSHypwoox=xxAoxHoox=x
31 18 23 30 3anbi123d w=WoBasew=0wxyxBasewyBasewxyoyoxxLSAtomswoxLSHypwoox=xoV=0˙xyxVyVxyoyoxxAoxHoox=x
32 13 31 rabeqbidv w=WoLSubSpw𝒫Basew|oBasew=0wxyxBasewyBasewxyoyoxxLSAtomswoxLSHypwoox=x=oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=x
33 df-lpolN LPol=wVoLSubSpw𝒫Basew|oBasew=0wxyxBasewyBasewxyoyoxxLSAtomswoxLSHypwoox=x
34 ovex S𝒫VV
35 34 rabex oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=xV
36 32 33 35 fvmpt WVLPolW=oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=x
37 6 36 eqtrid WVP=oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=x
38 7 37 syl WXP=oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=x