Metamath Proof Explorer


Theorem lsatdim

Description: A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypotheses lbslsat.v V=BaseW
lbslsat.n N=LSpanW
lbslsat.z 0˙=0W
lbslsat.y Y=W𝑠NX
Assertion lsatdim WLVecXVX0˙dimY=1

Proof

Step Hyp Ref Expression
1 lbslsat.v V=BaseW
2 lbslsat.n N=LSpanW
3 lbslsat.z 0˙=0W
4 lbslsat.y Y=W𝑠NX
5 simp1 WLVecXVX0˙WLVec
6 lveclmod WLVecWLMod
7 5 6 syl WLVecXVX0˙WLMod
8 simp2 WLVecXVX0˙XV
9 8 snssd WLVecXVX0˙XV
10 eqid LSubSpW=LSubSpW
11 1 10 2 lspcl WLModXVNXLSubSpW
12 7 9 11 syl2anc WLVecXVX0˙NXLSubSpW
13 4 10 lsslvec WLVecNXLSubSpWYLVec
14 5 12 13 syl2anc WLVecXVX0˙YLVec
15 1 2 3 4 lbslsat WLVecXVX0˙XLBasisY
16 eqid LBasisY=LBasisY
17 16 dimval YLVecXLBasisYdimY=X
18 14 15 17 syl2anc WLVecXVX0˙dimY=X
19 hashsng XVX=1
20 8 19 syl WLVecXVX0˙X=1
21 18 20 eqtrd WLVecXVX0˙dimY=1