Metamath Proof Explorer


Theorem lsatel

Description: A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014)

Ref Expression
Hypotheses lsatel.o 0˙=0W
lsatel.n N=LSpanW
lsatel.a A=LSAtomsW
lsatel.w φWLVec
lsatel.u φUA
lsatel.x φXU
lsatel.e φX0˙
Assertion lsatel φU=NX

Proof

Step Hyp Ref Expression
1 lsatel.o 0˙=0W
2 lsatel.n N=LSpanW
3 lsatel.a A=LSAtomsW
4 lsatel.w φWLVec
5 lsatel.u φUA
6 lsatel.x φXU
7 lsatel.e φX0˙
8 eqid LSubSpW=LSubSpW
9 lveclmod WLVecWLMod
10 4 9 syl φWLMod
11 8 3 10 5 lsatlssel φULSubSpW
12 8 2 10 11 6 lspsnel5a φNXU
13 eqid BaseW=BaseW
14 13 8 lssel ULSubSpWXUXBaseW
15 11 6 14 syl2anc φXBaseW
16 13 2 1 3 lsatlspsn2 WLModXBaseWX0˙NXA
17 10 15 7 16 syl3anc φNXA
18 3 4 17 5 lsatcmp φNXUNX=U
19 12 18 mpbid φNX=U
20 19 eqcomd φU=NX