Metamath Proof Explorer


Theorem lsatelbN

Description: A nonzero vector in an atom determines the atom. (Contributed by NM, 3-Feb-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lsatelb.v V=BaseW
lsatelb.o 0˙=0W
lsatelb.n N=LSpanW
lsatelb.a A=LSAtomsW
lsatelb.w φWLVec
lsatelb.x φXV0˙
lsatelb.u φUA
Assertion lsatelbN φXUU=NX

Proof

Step Hyp Ref Expression
1 lsatelb.v V=BaseW
2 lsatelb.o 0˙=0W
3 lsatelb.n N=LSpanW
4 lsatelb.a A=LSAtomsW
5 lsatelb.w φWLVec
6 lsatelb.x φXV0˙
7 lsatelb.u φUA
8 5 adantr φXUWLVec
9 7 adantr φXUUA
10 simpr φXUXU
11 eldifsn XV0˙XVX0˙
12 6 11 sylib φXVX0˙
13 12 simprd φX0˙
14 13 adantr φXUX0˙
15 2 3 4 8 9 10 14 lsatel φXUU=NX
16 eqimss2 U=NXNXU
17 16 adantl φU=NXNXU
18 eqid LSubSpW=LSubSpW
19 lveclmod WLVecWLMod
20 5 19 syl φWLMod
21 18 4 20 7 lsatlssel φULSubSpW
22 6 eldifad φXV
23 1 18 3 20 21 22 lspsnel5 φXUNXU
24 23 adantr φU=NXXUNXU
25 17 24 mpbird φU=NXXU
26 15 25 impbida φXUU=NX