Metamath Proof Explorer


Theorem lshpkrcl

Description: The set G defined by hyperplane U is a linear functional. (Contributed by NM, 17-Jul-2014)

Ref Expression
Hypotheses lshpkr.v V=BaseW
lshpkr.a +˙=+W
lshpkr.n N=LSpanW
lshpkr.p ˙=LSSumW
lshpkr.h H=LSHypW
lshpkr.w φWLVec
lshpkr.u φUH
lshpkr.z φZV
lshpkr.e φU˙NZ=V
lshpkr.d D=ScalarW
lshpkr.k K=BaseD
lshpkr.t ·˙=W
lshpkr.g G=xVιkK|yUx=y+˙k·˙Z
lshpkr.f F=LFnlW
Assertion lshpkrcl φGF

Proof

Step Hyp Ref Expression
1 lshpkr.v V=BaseW
2 lshpkr.a +˙=+W
3 lshpkr.n N=LSpanW
4 lshpkr.p ˙=LSSumW
5 lshpkr.h H=LSHypW
6 lshpkr.w φWLVec
7 lshpkr.u φUH
8 lshpkr.z φZV
9 lshpkr.e φU˙NZ=V
10 lshpkr.d D=ScalarW
11 lshpkr.k K=BaseD
12 lshpkr.t ·˙=W
13 lshpkr.g G=xVιkK|yUx=y+˙k·˙Z
14 lshpkr.f F=LFnlW
15 6 adantr φaVWLVec
16 7 adantr φaVUH
17 8 adantr φaVZV
18 simpr φaVaV
19 9 adantr φaVU˙NZ=V
20 1 2 3 4 5 15 16 17 18 19 10 11 12 lshpsmreu φaV∃!kKyUa=y+˙k·˙Z
21 riotacl ∃!kKyUa=y+˙k·˙ZιkK|yUa=y+˙k·˙ZK
22 20 21 syl φaVιkK|yUa=y+˙k·˙ZK
23 eqeq1 x=ax=y+˙k·˙Za=y+˙k·˙Z
24 23 rexbidv x=ayUx=y+˙k·˙ZyUa=y+˙k·˙Z
25 24 riotabidv x=aιkK|yUx=y+˙k·˙Z=ιkK|yUa=y+˙k·˙Z
26 25 cbvmptv xVιkK|yUx=y+˙k·˙Z=aVιkK|yUa=y+˙k·˙Z
27 13 26 eqtri G=aVιkK|yUa=y+˙k·˙Z
28 22 27 fmptd φG:VK
29 eqid 0D=0D
30 1 2 3 4 5 6 7 8 8 9 10 11 12 29 13 lshpkrlem6 φlKuVvVGl·˙u+˙v=lDGu+DGv
31 30 ralrimivvva φlKuVvVGl·˙u+˙v=lDGu+DGv
32 eqid +D=+D
33 eqid D=D
34 1 2 10 12 11 32 33 14 islfl WLVecGFG:VKlKuVvVGl·˙u+˙v=lDGu+DGv
35 6 34 syl φGFG:VKlKuVvVGl·˙u+˙v=lDGu+DGv
36 28 31 35 mpbir2and φGF