Description: The set G defined by hyperplane U is a linear functional. (Contributed by NM, 17-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpkr.v | |
|
lshpkr.a | |
||
lshpkr.n | |
||
lshpkr.p | |
||
lshpkr.h | |
||
lshpkr.w | |
||
lshpkr.u | |
||
lshpkr.z | |
||
lshpkr.e | |
||
lshpkr.d | |
||
lshpkr.k | |
||
lshpkr.t | |
||
lshpkr.g | |
||
lshpkr.f | |
||
Assertion | lshpkrcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkr.v | |
|
2 | lshpkr.a | |
|
3 | lshpkr.n | |
|
4 | lshpkr.p | |
|
5 | lshpkr.h | |
|
6 | lshpkr.w | |
|
7 | lshpkr.u | |
|
8 | lshpkr.z | |
|
9 | lshpkr.e | |
|
10 | lshpkr.d | |
|
11 | lshpkr.k | |
|
12 | lshpkr.t | |
|
13 | lshpkr.g | |
|
14 | lshpkr.f | |
|
15 | 6 | adantr | |
16 | 7 | adantr | |
17 | 8 | adantr | |
18 | simpr | |
|
19 | 9 | adantr | |
20 | 1 2 3 4 5 15 16 17 18 19 10 11 12 | lshpsmreu | |
21 | riotacl | |
|
22 | 20 21 | syl | |
23 | eqeq1 | |
|
24 | 23 | rexbidv | |
25 | 24 | riotabidv | |
26 | 25 | cbvmptv | |
27 | 13 26 | eqtri | |
28 | 22 27 | fmptd | |
29 | eqid | |
|
30 | 1 2 3 4 5 6 7 8 8 9 10 11 12 29 13 | lshpkrlem6 | |
31 | 30 | ralrimivvva | |
32 | eqid | |
|
33 | eqid | |
|
34 | 1 2 10 12 11 32 33 14 | islfl | |
35 | 6 34 | syl | |
36 | 28 31 35 | mpbir2and | |