Metamath Proof Explorer


Theorem lsmcv2

Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of Kalmbach p. 153. ( spansncv2 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsmcv2.v V=BaseW
lsmcv2.s S=LSubSpW
lsmcv2.n N=LSpanW
lsmcv2.p ˙=LSSumW
lsmcv2.c C=LW
lsmcv2.w φWLVec
lsmcv2.u φUS
lsmcv2.x φXV
lsmcv2.l φ¬NXU
Assertion lsmcv2 φUCU˙NX

Proof

Step Hyp Ref Expression
1 lsmcv2.v V=BaseW
2 lsmcv2.s S=LSubSpW
3 lsmcv2.n N=LSpanW
4 lsmcv2.p ˙=LSSumW
5 lsmcv2.c C=LW
6 lsmcv2.w φWLVec
7 lsmcv2.u φUS
8 lsmcv2.x φXV
9 lsmcv2.l φ¬NXU
10 lveclmod WLVecWLMod
11 6 10 syl φWLMod
12 2 lsssssubg WLModSSubGrpW
13 11 12 syl φSSubGrpW
14 13 7 sseldd φUSubGrpW
15 1 2 3 lspsncl WLModXVNXS
16 11 8 15 syl2anc φNXS
17 13 16 sseldd φNXSubGrpW
18 4 14 17 lssnle φ¬NXUUU˙NX
19 9 18 mpbid φUU˙NX
20 3simpa φxSUxxU˙NXφxS
21 simp3l φxSUxxU˙NXUx
22 simp3r φxSUxxU˙NXxU˙NX
23 6 adantr φxSWLVec
24 7 adantr φxSUS
25 simpr φxSxS
26 8 adantr φxSXV
27 1 2 3 4 23 24 25 26 lsmcv φxSUxxU˙NXx=U˙NX
28 20 21 22 27 syl3anc φxSUxxU˙NXx=U˙NX
29 28 3exp φxSUxxU˙NXx=U˙NX
30 29 ralrimiv φxSUxxU˙NXx=U˙NX
31 2 4 lsmcl WLModUSNXSU˙NXS
32 11 7 16 31 syl3anc φU˙NXS
33 2 5 6 7 32 lcvbr2 φUCU˙NXUU˙NXxSUxxU˙NXx=U˙NX
34 19 30 33 mpbir2and φUCU˙NX