Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of Kalmbach p. 153. ( spansncv2 analog.) (Contributed by NM, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmcv2.v | |
|
lsmcv2.s | |
||
lsmcv2.n | |
||
lsmcv2.p | |
||
lsmcv2.c | |
||
lsmcv2.w | |
||
lsmcv2.u | |
||
lsmcv2.x | |
||
lsmcv2.l | |
||
Assertion | lsmcv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcv2.v | |
|
2 | lsmcv2.s | |
|
3 | lsmcv2.n | |
|
4 | lsmcv2.p | |
|
5 | lsmcv2.c | |
|
6 | lsmcv2.w | |
|
7 | lsmcv2.u | |
|
8 | lsmcv2.x | |
|
9 | lsmcv2.l | |
|
10 | lveclmod | |
|
11 | 6 10 | syl | |
12 | 2 | lsssssubg | |
13 | 11 12 | syl | |
14 | 13 7 | sseldd | |
15 | 1 2 3 | lspsncl | |
16 | 11 8 15 | syl2anc | |
17 | 13 16 | sseldd | |
18 | 4 14 17 | lssnle | |
19 | 9 18 | mpbid | |
20 | 3simpa | |
|
21 | simp3l | |
|
22 | simp3r | |
|
23 | 6 | adantr | |
24 | 7 | adantr | |
25 | simpr | |
|
26 | 8 | adantr | |
27 | 1 2 3 4 23 24 25 26 | lsmcv | |
28 | 20 21 22 27 | syl3anc | |
29 | 28 | 3exp | |
30 | 29 | ralrimiv | |
31 | 2 4 | lsmcl | |
32 | 11 7 16 31 | syl3anc | |
33 | 2 5 6 7 32 | lcvbr2 | |
34 | 19 30 33 | mpbir2and | |