Metamath Proof Explorer


Theorem lsmub2x

Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v B=BaseG
lsmless2.s ˙=LSSumG
Assertion lsmub2x TSubMndGUBUT˙U

Proof

Step Hyp Ref Expression
1 lsmless2.v B=BaseG
2 lsmless2.s ˙=LSSumG
3 submrcl TSubMndGGMnd
4 3 ad2antrr TSubMndGUBxUGMnd
5 simpr TSubMndGUBUB
6 5 sselda TSubMndGUBxUxB
7 eqid +G=+G
8 eqid 0G=0G
9 1 7 8 mndlid GMndxB0G+Gx=x
10 4 6 9 syl2anc TSubMndGUBxU0G+Gx=x
11 1 submss TSubMndGTB
12 11 ad2antrr TSubMndGUBxUTB
13 simplr TSubMndGUBxUUB
14 8 subm0cl TSubMndG0GT
15 14 ad2antrr TSubMndGUBxU0GT
16 simpr TSubMndGUBxUxU
17 1 7 2 lsmelvalix GMndTBUB0GTxU0G+GxT˙U
18 4 12 13 15 16 17 syl32anc TSubMndGUBxU0G+GxT˙U
19 10 18 eqeltrrd TSubMndGUBxUxT˙U
20 19 ex TSubMndGUBxUxT˙U
21 20 ssrdv TSubMndGUBUT˙U