Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmless2.v | |
|
lsmless2.s | |
||
Assertion | lsmub2x | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmless2.v | |
|
2 | lsmless2.s | |
|
3 | submrcl | |
|
4 | 3 | ad2antrr | |
5 | simpr | |
|
6 | 5 | sselda | |
7 | eqid | |
|
8 | eqid | |
|
9 | 1 7 8 | mndlid | |
10 | 4 6 9 | syl2anc | |
11 | 1 | submss | |
12 | 11 | ad2antrr | |
13 | simplr | |
|
14 | 8 | subm0cl | |
15 | 14 | ad2antrr | |
16 | simpr | |
|
17 | 1 7 2 | lsmelvalix | |
18 | 4 12 13 15 16 17 | syl32anc | |
19 | 10 18 | eqeltrrd | |
20 | 19 | ex | |
21 | 20 | ssrdv | |