| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspdisj.v |  | 
						
							| 2 |  | lspdisj.o |  | 
						
							| 3 |  | lspdisj.n |  | 
						
							| 4 |  | lspdisj.s |  | 
						
							| 5 |  | lspdisj.w |  | 
						
							| 6 |  | lspdisj.u |  | 
						
							| 7 |  | lspdisj.x |  | 
						
							| 8 |  | lspdisj.e |  | 
						
							| 9 |  | lveclmod |  | 
						
							| 10 | 5 9 | syl |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 11 12 1 13 3 | ellspsn |  | 
						
							| 15 | 10 7 14 | syl2anc |  | 
						
							| 16 | 15 | biimpa |  | 
						
							| 17 | 16 | adantrr |  | 
						
							| 18 |  | simprr |  | 
						
							| 19 | 8 | ad2antrr |  | 
						
							| 20 |  | simplr |  | 
						
							| 21 | 18 20 | eqeltrrd |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 5 | ad2antrr |  | 
						
							| 24 | 6 | ad2antrr |  | 
						
							| 25 | 7 | ad2antrr |  | 
						
							| 26 |  | simprl |  | 
						
							| 27 | 1 13 11 12 22 4 23 24 25 26 | lssvs0or |  | 
						
							| 28 | 21 27 | mpbid |  | 
						
							| 29 | 28 | orcomd |  | 
						
							| 30 | 29 | ord |  | 
						
							| 31 | 19 30 | mpd |  | 
						
							| 32 | 31 | oveq1d |  | 
						
							| 33 | 10 | ad2antrr |  | 
						
							| 34 | 1 11 13 22 2 | lmod0vs |  | 
						
							| 35 | 33 25 34 | syl2anc |  | 
						
							| 36 | 18 32 35 | 3eqtrd |  | 
						
							| 37 | 36 | exp32 |  | 
						
							| 38 | 37 | adantrl |  | 
						
							| 39 | 38 | rexlimdv |  | 
						
							| 40 | 17 39 | mpd |  | 
						
							| 41 | 40 | ex |  | 
						
							| 42 |  | elin |  | 
						
							| 43 |  | velsn |  | 
						
							| 44 | 41 42 43 | 3imtr4g |  | 
						
							| 45 | 44 | ssrdv |  | 
						
							| 46 | 1 4 3 | lspsncl |  | 
						
							| 47 | 10 7 46 | syl2anc |  | 
						
							| 48 | 2 4 | lss0ss |  | 
						
							| 49 | 10 47 48 | syl2anc |  | 
						
							| 50 | 2 4 | lss0ss |  | 
						
							| 51 | 10 6 50 | syl2anc |  | 
						
							| 52 | 49 51 | ssind |  | 
						
							| 53 | 45 52 | eqssd |  |