Metamath Proof Explorer


Theorem lspdisj2

Description: Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses lspdisj2.v V=BaseW
lspdisj2.o 0˙=0W
lspdisj2.n N=LSpanW
lspdisj2.w φWLVec
lspdisj2.x φXV
lspdisj2.y φYV
lspdisj2.q φNXNY
Assertion lspdisj2 φNXNY=0˙

Proof

Step Hyp Ref Expression
1 lspdisj2.v V=BaseW
2 lspdisj2.o 0˙=0W
3 lspdisj2.n N=LSpanW
4 lspdisj2.w φWLVec
5 lspdisj2.x φXV
6 lspdisj2.y φYV
7 lspdisj2.q φNXNY
8 sneq X=0˙X=0˙
9 8 fveq2d X=0˙NX=N0˙
10 lveclmod WLVecWLMod
11 4 10 syl φWLMod
12 2 3 lspsn0 WLModN0˙=0˙
13 11 12 syl φN0˙=0˙
14 9 13 sylan9eqr φX=0˙NX=0˙
15 14 ineq1d φX=0˙NXNY=0˙NY
16 eqid LSubSpW=LSubSpW
17 1 16 3 lspsncl WLModYVNYLSubSpW
18 11 6 17 syl2anc φNYLSubSpW
19 2 16 lss0ss WLModNYLSubSpW0˙NY
20 11 18 19 syl2anc φ0˙NY
21 df-ss 0˙NY0˙NY=0˙
22 20 21 sylib φ0˙NY=0˙
23 22 adantr φX=0˙0˙NY=0˙
24 15 23 eqtrd φX=0˙NXNY=0˙
25 4 adantr φX0˙WLVec
26 18 adantr φX0˙NYLSubSpW
27 5 adantr φX0˙XV
28 7 adantr φX0˙NXNY
29 25 adantr φX0˙XNYWLVec
30 6 adantr φX0˙YV
31 30 adantr φX0˙XNYYV
32 simpr φX0˙XNYXNY
33 simplr φX0˙XNYX0˙
34 1 2 3 29 31 32 33 lspsneleq φX0˙XNYNX=NY
35 34 ex φX0˙XNYNX=NY
36 35 necon3ad φX0˙NXNY¬XNY
37 28 36 mpd φX0˙¬XNY
38 1 2 3 16 25 26 27 37 lspdisj φX0˙NXNY=0˙
39 24 38 pm2.61dane φNXNY=0˙