Description: Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014) TODO: Shouldn't we swap MG and NG since we are computing a property of NG ? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015.
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsslsp.x | |
|
lsslsp.m | |
||
lsslsp.n | |
||
lsslsp.l | |
||
Assertion | lsslsp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsslsp.x | |
|
2 | lsslsp.m | |
|
3 | lsslsp.n | |
|
4 | lsslsp.l | |
|
5 | simp1 | |
|
6 | 1 4 | lsslmod | |
7 | 6 | 3adant3 | |
8 | simp3 | |
|
9 | eqid | |
|
10 | 9 4 | lssss | |
11 | 10 | 3ad2ant2 | |
12 | 1 9 | ressbas2 | |
13 | 11 12 | syl | |
14 | 8 13 | sseqtrd | |
15 | eqid | |
|
16 | eqid | |
|
17 | 15 16 3 | lspcl | |
18 | 7 14 17 | syl2anc | |
19 | 1 4 16 | lsslss | |
20 | 19 | 3adant3 | |
21 | 18 20 | mpbid | |
22 | 21 | simpld | |
23 | 15 3 | lspssid | |
24 | 7 14 23 | syl2anc | |
25 | 4 2 | lspssp | |
26 | 5 22 24 25 | syl3anc | |
27 | 8 11 | sstrd | |
28 | 9 4 2 | lspcl | |
29 | 5 27 28 | syl2anc | |
30 | 4 2 | lspssp | |
31 | 1 4 16 | lsslss | |
32 | 31 | 3adant3 | |
33 | 29 30 32 | mpbir2and | |
34 | 9 2 | lspssid | |
35 | 5 27 34 | syl2anc | |
36 | 16 3 | lspssp | |
37 | 7 33 35 36 | syl3anc | |
38 | 26 37 | eqssd | |