Metamath Proof Explorer


Theorem lsslsp

Description: Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014) TODO: Shouldn't we swap MG and NG since we are computing a property of NG ? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015.

Ref Expression
Hypotheses lsslsp.x X=W𝑠U
lsslsp.m M=LSpanW
lsslsp.n N=LSpanX
lsslsp.l L=LSubSpW
Assertion lsslsp WLModULGUMG=NG

Proof

Step Hyp Ref Expression
1 lsslsp.x X=W𝑠U
2 lsslsp.m M=LSpanW
3 lsslsp.n N=LSpanX
4 lsslsp.l L=LSubSpW
5 simp1 WLModULGUWLMod
6 1 4 lsslmod WLModULXLMod
7 6 3adant3 WLModULGUXLMod
8 simp3 WLModULGUGU
9 eqid BaseW=BaseW
10 9 4 lssss ULUBaseW
11 10 3ad2ant2 WLModULGUUBaseW
12 1 9 ressbas2 UBaseWU=BaseX
13 11 12 syl WLModULGUU=BaseX
14 8 13 sseqtrd WLModULGUGBaseX
15 eqid BaseX=BaseX
16 eqid LSubSpX=LSubSpX
17 15 16 3 lspcl XLModGBaseXNGLSubSpX
18 7 14 17 syl2anc WLModULGUNGLSubSpX
19 1 4 16 lsslss WLModULNGLSubSpXNGLNGU
20 19 3adant3 WLModULGUNGLSubSpXNGLNGU
21 18 20 mpbid WLModULGUNGLNGU
22 21 simpld WLModULGUNGL
23 15 3 lspssid XLModGBaseXGNG
24 7 14 23 syl2anc WLModULGUGNG
25 4 2 lspssp WLModNGLGNGMGNG
26 5 22 24 25 syl3anc WLModULGUMGNG
27 8 11 sstrd WLModULGUGBaseW
28 9 4 2 lspcl WLModGBaseWMGL
29 5 27 28 syl2anc WLModULGUMGL
30 4 2 lspssp WLModULGUMGU
31 1 4 16 lsslss WLModULMGLSubSpXMGLMGU
32 31 3adant3 WLModULGUMGLSubSpXMGLMGU
33 29 30 32 mpbir2and WLModULGUMGLSubSpX
34 9 2 lspssid WLModGBaseWGMG
35 5 27 34 syl2anc WLModULGUGMG
36 16 3 lspssp XLModMGLSubSpXGMGNGMG
37 7 33 35 36 syl3anc WLModULGUNGMG
38 26 37 eqssd WLModULGUMG=NG