Metamath Proof Explorer


Theorem lssnle

Description: Equivalent expressions for "not less than". ( chnlei analog.) (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lssnle.p ˙ = LSSum G
lssnle.t φ T SubGrp G
lssnle.u φ U SubGrp G
Assertion lssnle φ ¬ U T T T ˙ U

Proof

Step Hyp Ref Expression
1 lssnle.p ˙ = LSSum G
2 lssnle.t φ T SubGrp G
3 lssnle.u φ U SubGrp G
4 1 lsmss2b T SubGrp G U SubGrp G U T T ˙ U = T
5 2 3 4 syl2anc φ U T T ˙ U = T
6 eqcom T ˙ U = T T = T ˙ U
7 5 6 bitrdi φ U T T = T ˙ U
8 7 necon3bbid φ ¬ U T T T ˙ U
9 1 lsmub1 T SubGrp G U SubGrp G T T ˙ U
10 2 3 9 syl2anc φ T T ˙ U
11 df-pss T T ˙ U T T ˙ U T T ˙ U
12 11 baib T T ˙ U T T ˙ U T T ˙ U
13 10 12 syl φ T T ˙ U T T ˙ U
14 8 13 bitr4d φ ¬ U T T T ˙ U