Metamath Proof Explorer


Theorem lswco

Description: Mapping of (nonempty) words commutes with the "last symbol" operation. This theorem would not hold if W = (/) , ( F(/) ) =/= (/) and (/) e. A , because then ( lastS( F o. W ) ) = ( lastS(/) ) = (/) =/= ( F(/) ) = ( F ( lastSW ) ) . (Contributed by AV, 11-Nov-2018)

Ref Expression
Assertion lswco WWordAWF:ABlastSFW=FlastSW

Proof

Step Hyp Ref Expression
1 ffun F:ABFunF
2 1 anim1i F:ABWWordAFunFWWordA
3 2 ancoms WWordAF:ABFunFWWordA
4 3 3adant2 WWordAWF:ABFunFWWordA
5 cofunexg FunFWWordAFWV
6 lsw FWVlastSFW=FWFW1
7 4 5 6 3syl WWordAWF:ABlastSFW=FWFW1
8 lenco WWordAF:ABFW=W
9 8 3adant2 WWordAWF:ABFW=W
10 9 fvoveq1d WWordAWF:ABFWFW1=FWW1
11 wrdf WWordAW:0..^WA
12 11 adantr WWordAWW:0..^WA
13 lennncl WWordAWW
14 fzo0end WW10..^W
15 13 14 syl WWordAWW10..^W
16 12 15 jca WWordAWW:0..^WAW10..^W
17 16 3adant3 WWordAWF:ABW:0..^WAW10..^W
18 fvco3 W:0..^WAW10..^WFWW1=FWW1
19 17 18 syl WWordAWF:ABFWW1=FWW1
20 lsw WWordAlastSW=WW1
21 20 3ad2ant1 WWordAWF:ABlastSW=WW1
22 21 eqcomd WWordAWF:ABWW1=lastSW
23 22 fveq2d WWordAWF:ABFWW1=FlastSW
24 19 23 eqtrd WWordAWF:ABFWW1=FlastSW
25 7 10 24 3eqtrd WWordAWF:ABlastSFW=FlastSW