Metamath Proof Explorer


Theorem ltdiv23neg

Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ltdiv23neg.1 φA
ltdiv23neg.2 φB
ltdiv23neg.3 φB<0
ltdiv23neg.4 φC
ltdiv23neg.5 φC<0
Assertion ltdiv23neg φAB<CAC<B

Proof

Step Hyp Ref Expression
1 ltdiv23neg.1 φA
2 ltdiv23neg.2 φB
3 ltdiv23neg.3 φB<0
4 ltdiv23neg.4 φC
5 ltdiv23neg.5 φC<0
6 2 3 ltned φB0
7 1 2 6 redivcld φAB
8 7 4 2 3 ltmulneg φAB<CCB<ABB
9 recn AA
10 1 9 syl φA
11 recn BB
12 2 11 syl φB
13 10 12 6 divcan1d φABB=A
14 13 breq2d φCB<ABBCB<A
15 remulcl CBCB
16 4 2 15 syl2anc φCB
17 4 5 ltned φC0
18 4 17 rereccld φ1C
19 4 5 reclt0d φ1C<0
20 16 1 18 19 ltmulneg φCB<AA1C<CB1C
21 recn CC
22 4 21 syl φC
23 10 22 17 divrecd φAC=A1C
24 23 eqcomd φA1C=AC
25 22 12 mulcld φCB
26 25 22 17 divrecd φCBC=CB1C
27 divcan3 BCC0CBC=B
28 27 3expb BCC0CBC=B
29 12 22 17 28 syl12anc φCBC=B
30 26 29 eqtr3d φCB1C=B
31 24 30 breq12d φA1C<CB1CAC<B
32 20 31 bitrd φCB<AAC<B
33 8 14 32 3bitrd φAB<CAC<B