Metamath Proof Explorer


Theorem ltdivp1i

Description: Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005)

Ref Expression
Hypotheses ltplus1.1 A
prodgt0.2 B
ltmul1.3 C
Assertion ltdivp1i 0A0CA<BC+1AC<B

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 prodgt0.2 B
3 ltmul1.3 C
4 1re 1
5 3 4 readdcli C+1
6 3 ltp1i C<C+1
7 3 5 6 ltleii CC+1
8 lemul2a CC+1A0ACC+1ACAC+1
9 7 8 mpan2 CC+1A0AACAC+1
10 3 5 9 mp3an12 A0AACAC+1
11 1 10 mpan 0AACAC+1
12 11 3ad2ant1 0A0CA<BC+1ACAC+1
13 0re 0
14 13 3 5 lelttri 0CC<C+10<C+1
15 6 14 mpan2 0C0<C+1
16 5 gt0ne0i 0<C+1C+10
17 2 5 redivclzi C+10BC+1
18 16 17 syl 0<C+1BC+1
19 ltmul1 ABC+1C+10<C+1A<BC+1AC+1<BC+1C+1
20 1 19 mp3an1 BC+1C+10<C+1A<BC+1AC+1<BC+1C+1
21 5 20 mpanr1 BC+10<C+1A<BC+1AC+1<BC+1C+1
22 18 21 mpancom 0<C+1A<BC+1AC+1<BC+1C+1
23 22 biimpd 0<C+1A<BC+1AC+1<BC+1C+1
24 15 23 syl 0CA<BC+1AC+1<BC+1C+1
25 24 imp 0CA<BC+1AC+1<BC+1C+1
26 2 recni B
27 5 recni C+1
28 26 27 divcan1zi C+10BC+1C+1=B
29 15 16 28 3syl 0CBC+1C+1=B
30 29 adantr 0CA<BC+1BC+1C+1=B
31 25 30 breqtrd 0CA<BC+1AC+1<B
32 31 3adant1 0A0CA<BC+1AC+1<B
33 1 3 remulcli AC
34 1 5 remulcli AC+1
35 33 34 2 lelttri ACAC+1AC+1<BAC<B
36 12 32 35 syl2anc 0A0CA<BC+1AC<B