Description: Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltplus1.1 | |
|
prodgt0.2 | |
||
ltmul1.3 | |
||
Assertion | ltdivp1i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltplus1.1 | |
|
2 | prodgt0.2 | |
|
3 | ltmul1.3 | |
|
4 | 1re | |
|
5 | 3 4 | readdcli | |
6 | 3 | ltp1i | |
7 | 3 5 6 | ltleii | |
8 | lemul2a | |
|
9 | 7 8 | mpan2 | |
10 | 3 5 9 | mp3an12 | |
11 | 1 10 | mpan | |
12 | 11 | 3ad2ant1 | |
13 | 0re | |
|
14 | 13 3 5 | lelttri | |
15 | 6 14 | mpan2 | |
16 | 5 | gt0ne0i | |
17 | 2 5 | redivclzi | |
18 | 16 17 | syl | |
19 | ltmul1 | |
|
20 | 1 19 | mp3an1 | |
21 | 5 20 | mpanr1 | |
22 | 18 21 | mpancom | |
23 | 22 | biimpd | |
24 | 15 23 | syl | |
25 | 24 | imp | |
26 | 2 | recni | |
27 | 5 | recni | |
28 | 26 27 | divcan1zi | |
29 | 15 16 28 | 3syl | |
30 | 29 | adantr | |
31 | 25 30 | breqtrd | |
32 | 31 | 3adant1 | |
33 | 1 3 | remulcli | |
34 | 1 5 | remulcli | |
35 | 33 34 2 | lelttri | |
36 | 12 32 35 | syl2anc | |