Metamath Proof Explorer


Theorem ltrmynn0

Description: The Y-sequence is strictly monotonic on NN0 . Strengthened by ltrmy . (Contributed by Stefan O'Rear, 24-Sep-2014)

Ref Expression
Assertion ltrmynn0 A2M0N0M<NAYrmM<AYrmN

Proof

Step Hyp Ref Expression
1 nn0z b0b
2 frmy Yrm:2×
3 2 fovcl A2bAYrmb
4 1 3 sylan2 A2b0AYrmb
5 4 zred A2b0AYrmb
6 eluzelre A2A
7 6 adantr A2b0A
8 5 7 remulcld A2b0AYrmbA
9 frmx Xrm:2×0
10 9 fovcl A2bAXrmb0
11 1 10 sylan2 A2b0AXrmb0
12 11 nn0red A2b0AXrmb
13 8 12 readdcld A2b0AYrmbA+AXrmb
14 rmxypos A2b00<AXrmb0AYrmb
15 14 simprd A2b00AYrmb
16 eluz2nn A2A
17 16 nnge1d A21A
18 17 adantr A2b01A
19 5 7 15 18 lemulge11d A2b0AYrmbAYrmbA
20 14 simpld A2b00<AXrmb
21 12 8 ltaddposd A2b00<AXrmbAYrmbA<AYrmbA+AXrmb
22 20 21 mpbid A2b0AYrmbA<AYrmbA+AXrmb
23 5 8 13 19 22 lelttrd A2b0AYrmb<AYrmbA+AXrmb
24 rmyp1 A2bAYrmb+1=AYrmbA+AXrmb
25 1 24 sylan2 A2b0AYrmb+1=AYrmbA+AXrmb
26 23 25 breqtrrd A2b0AYrmb<AYrmb+1
27 nn0z a0a
28 2 fovcl A2aAYrma
29 27 28 sylan2 A2a0AYrma
30 29 zred A2a0AYrma
31 nn0uz 0=0
32 oveq2 a=b+1AYrma=AYrmb+1
33 oveq2 a=bAYrma=AYrmb
34 oveq2 a=MAYrma=AYrmM
35 oveq2 a=NAYrma=AYrmN
36 26 30 31 32 33 34 35 monotuz A2M0N0M<NAYrmM<AYrmN
37 36 3impb A2M0N0M<NAYrmM<AYrmN