Metamath Proof Explorer


Theorem lvecdim0i

Description: A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023)

Ref Expression
Hypothesis lvecdim0.1 0 ˙ = 0 V
Assertion lvecdim0i V LVec dim V = 0 Base V = 0 ˙

Proof

Step Hyp Ref Expression
1 lvecdim0.1 0 ˙ = 0 V
2 eqid LBasis V = LBasis V
3 2 lbsex V LVec LBasis V
4 n0 LBasis V b b LBasis V
5 3 4 sylib V LVec b b LBasis V
6 5 adantr V LVec dim V = 0 b b LBasis V
7 simpr V LVec dim V = 0 b LBasis V b LBasis V
8 2 dimval V LVec b LBasis V dim V = b
9 8 adantlr V LVec dim V = 0 b LBasis V dim V = b
10 simplr V LVec dim V = 0 b LBasis V dim V = 0
11 9 10 eqtr3d V LVec dim V = 0 b LBasis V b = 0
12 hasheq0 b LBasis V b = 0 b =
13 12 biimpa b LBasis V b = 0 b =
14 7 11 13 syl2anc V LVec dim V = 0 b LBasis V b =
15 14 7 eqeltrrd V LVec dim V = 0 b LBasis V LBasis V
16 6 15 exlimddv V LVec dim V = 0 LBasis V
17 eqid Base V = Base V
18 eqid LSpan V = LSpan V
19 17 2 18 lbssp LBasis V LSpan V = Base V
20 16 19 syl V LVec dim V = 0 LSpan V = Base V
21 lveclmod V LVec V LMod
22 21 adantr V LVec dim V = 0 V LMod
23 1 18 lsp0 V LMod LSpan V = 0 ˙
24 22 23 syl V LVec dim V = 0 LSpan V = 0 ˙
25 20 24 eqtr3d V LVec dim V = 0 Base V = 0 ˙