Metamath Proof Explorer


Theorem m1expaddsub

Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Assertion m1expaddsub XY1XY=1X+Y

Proof

Step Hyp Ref Expression
1 m1expcl X1X
2 1 zcnd X1X
3 2 adantr XY1X
4 m1expcl Y1Y
5 4 zcnd Y1Y
6 5 adantl XY1Y
7 neg1cn 1
8 neg1ne0 10
9 expne0i 110Y1Y0
10 7 8 9 mp3an12 Y1Y0
11 10 adantl XY1Y0
12 3 6 11 divrecd XY1X1Y=1X11Y
13 m1expcl2 Y1Y11
14 elpri 1Y111Y=11Y=1
15 ax-1cn 1
16 ax-1ne0 10
17 divneg2 111011=11
18 15 15 16 17 mp3an 11=11
19 1div1e1 11=1
20 19 negeqi 11=1
21 18 20 eqtr3i 11=1
22 oveq2 1Y=111Y=11
23 id 1Y=11Y=1
24 21 22 23 3eqtr4a 1Y=111Y=1Y
25 oveq2 1Y=111Y=11
26 id 1Y=11Y=1
27 19 25 26 3eqtr4a 1Y=111Y=1Y
28 24 27 jaoi 1Y=11Y=111Y=1Y
29 13 14 28 3syl Y11Y=1Y
30 29 adantl XY11Y=1Y
31 30 oveq2d XY1X11Y=1X1Y
32 12 31 eqtrd XY1X1Y=1X1Y
33 expsub 110XY1XY=1X1Y
34 7 8 33 mpanl12 XY1XY=1X1Y
35 expaddz 110XY1X+Y=1X1Y
36 7 8 35 mpanl12 XY1X+Y=1X1Y
37 32 34 36 3eqtr4d XY1XY=1X+Y