| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpmfo.s |  | 
						
							| 2 |  | m2cpmfo.t |  | 
						
							| 3 |  | m2cpmfo.a |  | 
						
							| 4 |  | m2cpmfo.k |  | 
						
							| 5 | 1 2 3 4 | m2cpmf |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | simplll |  | 
						
							| 8 |  | simpllr |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | simp2 |  | 
						
							| 13 |  | simp3 |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 1 14 9 11 | cpmatpmat |  | 
						
							| 16 | 15 | ad4ant124 |  | 
						
							| 17 | 16 | 3ad2ant1 |  | 
						
							| 18 | 9 10 11 12 13 17 | matecld |  | 
						
							| 19 |  | 0nn0 |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 20 10 14 6 | coe1fvalcl |  | 
						
							| 22 | 18 19 21 | sylancl |  | 
						
							| 23 | 3 6 4 7 8 22 | matbas2d |  | 
						
							| 24 | 23 | fmpttd |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 | 24 25 | ffvelcdmd |  | 
						
							| 27 |  | fveq2 |  | 
						
							| 28 | 27 | eqeq2d |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 30 1 | cpm2mfval |  | 
						
							| 32 | 31 | fveq1d |  | 
						
							| 33 | 32 | 3adant3 |  | 
						
							| 34 | 33 | eqcomd |  | 
						
							| 35 | 34 | fveq2d |  | 
						
							| 36 | 1 30 2 | m2cpminvid2 |  | 
						
							| 37 | 35 36 | eqtrd |  | 
						
							| 38 | 37 | 3expa |  | 
						
							| 39 | 38 | eqcomd |  | 
						
							| 40 | 26 29 39 | rspcedvd |  | 
						
							| 41 | 40 | ralrimiva |  | 
						
							| 42 |  | dffo3 |  | 
						
							| 43 | 5 41 42 | sylanbrc |  |