Metamath Proof Explorer


Theorem maduf

Description: Creating the adjunct of matrices is a function from the set of matrices into the set of matrices. (Contributed by Stefan O'Rear, 11-Jul-2018)

Ref Expression
Hypotheses maduf.a A=NMatR
maduf.j J=NmaAdjuR
maduf.b B=BaseA
Assertion maduf RCRingJ:BB

Proof

Step Hyp Ref Expression
1 maduf.a A=NMatR
2 maduf.j J=NmaAdjuR
3 maduf.b B=BaseA
4 eqid BaseR=BaseR
5 1 3 matrcl mBNFinRV
6 5 adantl RCRingmBNFinRV
7 6 simpld RCRingmBNFin
8 simpl RCRingmBRCRing
9 eqid NmaDetR=NmaDetR
10 9 1 3 4 mdetf RCRingNmaDetR:BBaseR
11 10 adantr RCRingmBNmaDetR:BBaseR
12 11 3ad2ant1 RCRingmBiNjNNmaDetR:BBaseR
13 7 3ad2ant1 RCRingmBiNjNNFin
14 simp1l RCRingmBiNjNRCRing
15 simp11l RCRingmBiNjNkNlNRCRing
16 crngring RCRingRRing
17 eqid 1R=1R
18 4 17 ringidcl RRing1RBaseR
19 eqid 0R=0R
20 4 19 ring0cl RRing0RBaseR
21 18 20 ifcld RRingifl=i1R0RBaseR
22 15 16 21 3syl RCRingmBiNjNkNlNifl=i1R0RBaseR
23 simp2 RCRingmBiNjNkNlNkN
24 simp3 RCRingmBiNjNkNlNlN
25 simp11r RCRingmBiNjNkNlNmB
26 1 4 3 23 24 25 matecld RCRingmBiNjNkNlNkmlBaseR
27 22 26 ifcld RCRingmBiNjNkNlNifk=jifl=i1R0RkmlBaseR
28 1 4 3 13 14 27 matbas2d RCRingmBiNjNkN,lNifk=jifl=i1R0RkmlB
29 12 28 ffvelcdmd RCRingmBiNjNNmaDetRkN,lNifk=jifl=i1R0RkmlBaseR
30 1 4 3 7 8 29 matbas2d RCRingmBiN,jNNmaDetRkN,lNifk=jifl=i1R0RkmlB
31 1 9 2 3 17 19 madufval J=mBiN,jNNmaDetRkN,lNifk=jifl=i1R0Rkml
32 30 31 fmptd RCRingJ:BB