Metamath Proof Explorer


Theorem mapdcnvcl

Description: Closure of the converse of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdcnvcl.h H=LHypK
mapdcnvcl.m M=mapdKW
mapdcnvcl.u U=DVecHKW
mapdcnvcl.s S=LSubSpU
mapdcnvcl.k φKHLWH
mapdcnvcl.x φXranM
Assertion mapdcnvcl φM-1XS

Proof

Step Hyp Ref Expression
1 mapdcnvcl.h H=LHypK
2 mapdcnvcl.m M=mapdKW
3 mapdcnvcl.u U=DVecHKW
4 mapdcnvcl.s S=LSubSpU
5 mapdcnvcl.k φKHLWH
6 mapdcnvcl.x φXranM
7 eqid ocHKW=ocHKW
8 eqid LFnlU=LFnlU
9 eqid LKerU=LKerU
10 eqid LDualU=LDualU
11 eqid LSubSpLDualU=LSubSpLDualU
12 eqid gLFnlU|ocHKWocHKWLKerUg=LKerUg=gLFnlU|ocHKWocHKWLKerUg=LKerUg
13 1 7 2 3 4 8 9 10 11 12 5 mapd1o φM:S1-1 ontoLSubSpLDualU𝒫gLFnlU|ocHKWocHKWLKerUg=LKerUg
14 f1of1 M:S1-1 ontoLSubSpLDualU𝒫gLFnlU|ocHKWocHKWLKerUg=LKerUgM:S1-1LSubSpLDualU𝒫gLFnlU|ocHKWocHKWLKerUg=LKerUg
15 f1f1orn M:S1-1LSubSpLDualU𝒫gLFnlU|ocHKWocHKWLKerUg=LKerUgM:S1-1 ontoranM
16 13 14 15 3syl φM:S1-1 ontoranM
17 f1ocnvdm M:S1-1 ontoranMXranMM-1XS
18 16 6 17 syl2anc φM-1XS