Metamath Proof Explorer


Theorem mapdh6fN

Description: Lemmma for mapdh6N . Part (6) in Baer p. 47 line 38. (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdh.p + ˙ = + U
mapdh.a ˙ = + C
mapdh6d.xn φ ¬ X N Y Z
mapdh6d.yz φ N Y = N Z
mapdh6d.y φ Y V 0 ˙
mapdh6d.z φ Z V 0 ˙
mapdh6d.w φ w V 0 ˙
mapdh6d.wn φ ¬ w N X Y
Assertion mapdh6fN φ I X F w + ˙ Y = I X F w ˙ I X F Y

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdh.p + ˙ = + U
19 mapdh.a ˙ = + C
20 mapdh6d.xn φ ¬ X N Y Z
21 mapdh6d.yz φ N Y = N Z
22 mapdh6d.y φ Y V 0 ˙
23 mapdh6d.z φ Z V 0 ˙
24 mapdh6d.w φ w V 0 ˙
25 mapdh6d.wn φ ¬ w N X Y
26 3 5 14 dvhlvec φ U LVec
27 22 eldifad φ Y V
28 24 eldifad φ w V
29 17 eldifad φ X V
30 23 eldifad φ Z V
31 6 9 26 29 27 30 20 lspindpi φ N X N Y N X N Z
32 31 simpld φ N X N Y
33 6 8 9 26 17 27 28 32 25 lspindp1 φ N w N Y ¬ X N w Y
34 33 simprd φ ¬ X N w Y
35 6 9 26 28 29 27 25 lspindpi φ N w N X N w N Y
36 35 simprd φ N w N Y
37 eqidd φ I X F w = I X F w
38 eqidd φ I X F Y = I X F Y
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 22 34 36 37 38 mapdh6aN φ I X F w + ˙ Y = I X F w ˙ I X F Y