Metamath Proof Explorer


Theorem mapdh6fN

Description: Lemmma for mapdh6N . Part (6) in Baer p. 47 line 38. (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdh.p +˙=+U
mapdh.a ˙=+C
mapdh6d.xn φ¬XNYZ
mapdh6d.yz φNY=NZ
mapdh6d.y φYV0˙
mapdh6d.z φZV0˙
mapdh6d.w φwV0˙
mapdh6d.wn φ¬wNXY
Assertion mapdh6fN φIXFw+˙Y=IXFw˙IXFY

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdh.p +˙=+U
19 mapdh.a ˙=+C
20 mapdh6d.xn φ¬XNYZ
21 mapdh6d.yz φNY=NZ
22 mapdh6d.y φYV0˙
23 mapdh6d.z φZV0˙
24 mapdh6d.w φwV0˙
25 mapdh6d.wn φ¬wNXY
26 3 5 14 dvhlvec φULVec
27 22 eldifad φYV
28 24 eldifad φwV
29 17 eldifad φXV
30 23 eldifad φZV
31 6 9 26 29 27 30 20 lspindpi φNXNYNXNZ
32 31 simpld φNXNY
33 6 8 9 26 17 27 28 32 25 lspindp1 φNwNY¬XNwY
34 33 simprd φ¬XNwY
35 6 9 26 28 29 27 25 lspindpi φNwNXNwNY
36 35 simprd φNwNY
37 eqidd φIXFw=IXFw
38 eqidd φIXFY=IXFY
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 22 34 36 37 38 mapdh6aN φIXFw+˙Y=IXFw˙IXFY