Metamath Proof Explorer


Theorem mapdheq

Description: Lemmma for ~? mapdh . The defining equation for h(x,x',y)=y' in part (2) in Baer p. 45 line 24. (Contributed by NM, 4-Apr-2015)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdhe.y φYV0˙
mapdhe.g φGD
mapdh.ne2 φNXNY
Assertion mapdheq φIXFY=GMNY=JGMNX-˙Y=JFRG

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdhe.y φYV0˙
19 mapdhe.g φGD
20 mapdh.ne2 φNXNY
21 1 2 17 15 18 mapdhval2 φIXFY=ιhD|MNY=JhMNX-˙Y=JFRh
22 21 eqeq1d φIXFY=GιhD|MNY=JhMNX-˙Y=JFRh=G
23 3 4 5 6 7 8 9 10 11 12 13 14 17 18 15 20 16 mapdpg φ∃!hDMNY=JhMNX-˙Y=JFRh
24 nfv hφ
25 nfcvd φ_hG
26 nfvd φhMNY=JGMNX-˙Y=JFRG
27 sneq h=Gh=G
28 27 fveq2d h=GJh=JG
29 28 eqeq2d h=GMNY=JhMNY=JG
30 oveq2 h=GFRh=FRG
31 30 sneqd h=GFRh=FRG
32 31 fveq2d h=GJFRh=JFRG
33 32 eqeq2d h=GMNX-˙Y=JFRhMNX-˙Y=JFRG
34 29 33 anbi12d h=GMNY=JhMNX-˙Y=JFRhMNY=JGMNX-˙Y=JFRG
35 34 adantl φh=GMNY=JhMNX-˙Y=JFRhMNY=JGMNX-˙Y=JFRG
36 24 25 26 19 35 riota2df φ∃!hDMNY=JhMNX-˙Y=JFRhMNY=JGMNX-˙Y=JFRGιhD|MNY=JhMNX-˙Y=JFRh=G
37 23 36 mpdan φMNY=JGMNX-˙Y=JFRGιhD|MNY=JhMNX-˙Y=JFRh=G
38 22 37 bitr4d φIXFY=GMNY=JGMNX-˙Y=JFRG